Electromagnetic and Hadron Calorimeters in the MIPP Experiment

Turgun Nigmanov, University of Michigan
nigmanov@fnal.gov

On Behalf of the MIPP Collaboration
MIPP Experiment

MIPP
Main Injector Particle Production Experiment (FNAL-E907)

Horizontal cut plane

TPC
Time of Flight
Chambers
EM shower detector
Cerenkov
Rosie
RICH
Neutron Calorimeter
Jolly Green Giant

MIPP main goals:

- Hadronic Fragmentation Scaling Law Test
- NuMI Target Study for the MINOS Experiment
- Proton Radiography
- Anti-proton Physics (upgrade)
- ILC Calorimeter studies (upgrade)
data sample

<table>
<thead>
<tr>
<th>Target</th>
<th>Momentum (GeV)</th>
<th>Events $\times 10^6$</th>
<th>Target</th>
<th>Momentum (GeV)</th>
<th>Events $\times 10^6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH2</td>
<td>5</td>
<td>0.21</td>
<td>2% Carbon</td>
<td>120</td>
<td>0.47</td>
</tr>
<tr>
<td>LH2</td>
<td>20</td>
<td>1.94</td>
<td>NuMI</td>
<td>120</td>
<td>1.78</td>
</tr>
<tr>
<td>LH2</td>
<td>60</td>
<td>1.98</td>
<td>Aluminum</td>
<td>35</td>
<td>0.10</td>
</tr>
<tr>
<td>LH2</td>
<td>85</td>
<td>1.73</td>
<td>Bismuth</td>
<td>35</td>
<td>0.52</td>
</tr>
<tr>
<td>Beryllium</td>
<td>35</td>
<td>0.10</td>
<td>Bismuth</td>
<td>60</td>
<td>1.26</td>
</tr>
<tr>
<td>Beryllium</td>
<td>60</td>
<td>0.56</td>
<td>Bismuth</td>
<td>120</td>
<td>1.05</td>
</tr>
<tr>
<td>Beryllium</td>
<td>120</td>
<td>1.08</td>
<td>Uranium</td>
<td>60</td>
<td>1.18</td>
</tr>
<tr>
<td>Carbon</td>
<td>60</td>
<td>0.21</td>
<td>K mass</td>
<td>40</td>
<td>5.98</td>
</tr>
<tr>
<td>2% Carbon</td>
<td>20</td>
<td>0.39</td>
<td>K mass</td>
<td>60</td>
<td>8.35</td>
</tr>
<tr>
<td>2% Carbon</td>
<td>60</td>
<td>0.26</td>
<td>Total</td>
<td></td>
<td>31.38</td>
</tr>
</tbody>
</table>
Main calorimeter goals:

- photon and neutron production studies
- studies for proton radiography
- inclusive π^0 production

Calorimeters specifications

EMCAL (built for MIPP):
- 10 layers of Pb and PWC’s
- $1.6(x) \times 1.5(y) \times 0.3(z)$ m3
- 10 radiation lengths
- P10+CF4 gas mix in PWC’s
- 640 ADC channels

HCAL (reused from E871 HyperCP):
- 64 layers of Fe and PS scintillator
- $1.0(x) \times 1.0(y) \times 2.4(z)$ m3
- 9.6 interaction lengths
- 8 ADC channels
EMCAL and HCAL looking upstream
cascade slices

Top graph: transverse slice of the electromagnetic cascade from 20 GeV/c electrons on lead

Middle graph: transverse slice of energy deposition of 59 GeV/c protons on lead

Bottom graph: longitudinal energy deposition profiles of 20 GeV/c electrons and 5 GeV/c positrons on lead
EMCal and HCal event display. HCal is not in scale in Z direction. Graph shows the charged track with two gammas (π^0 candidate?) produced with 59 GeV/c pion on Uranium target.
Energy calibration. Method 1:

\[E_o = C_E \times \sum EMCAL + C_H \times \sum HCAL \]

Top graphs: HCAL vs EMCAL dependences for protons (on left) and electrons (on right).

Middle graphs: Least square fit of above data.

Bottom graphs: Ratios of the energy deposited in the calorimeters to the particle’s momentum.
EMCAL and HCAL energy scale factors for hadrons (on top) and for e^-/e^+ (on bottom).
method 1 results, cont.

MIPP Preliminary

<table>
<thead>
<tr>
<th>p (GeV/c)</th>
<th>(e/\pi(EMCAL))</th>
<th>(e/\pi(HCAL))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^+)</td>
<td>(\approx 5)</td>
<td>0.83±0.05</td>
</tr>
<tr>
<td>(e^+)</td>
<td>(\approx 10)</td>
<td>0.79±0.05</td>
</tr>
<tr>
<td>(e^-)</td>
<td>20</td>
<td>0.60±0.07</td>
</tr>
</tbody>
</table>

Comparison of \(e\) and \(\pi\) results: \(e/\pi\) ratios.

MIPP Preliminary

<table>
<thead>
<tr>
<th>p (GeV/c)</th>
<th>(\sigma/p, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^-)</td>
<td>20</td>
</tr>
<tr>
<td>(\pi^+)</td>
<td>59</td>
</tr>
<tr>
<td>p</td>
<td>59</td>
</tr>
<tr>
<td>p</td>
<td>70</td>
</tr>
</tbody>
</table>

With thin active layer in EMCAL, gas PWC, the \(e/\pi\) ratio appears to be less then 1 (see top table). But the energy resolution appears to be quite good (see bottom table). This suggests that one can use a lead calorimeter (for photons) with the right ratio of active to passive layer thickness and get good energy resolution.

Our findings: sampling calorimeter is good for hadrons and also for photons!
Energy Calibration: Method 2

Calibration Method 2

Energy deposited in Layer E_j is given by

$$E_j = \sum_{k=1}^{k=N} \lambda_{jk} L_k$$

where L_k is the live energy observed in layer.

Total energy in calorimeter is given by

$$E_{tot} = \sum_{j=1}^{j=N} \sum_{k=1}^{k=N} \lambda_{jk} L_k = \sum_{k=1}^{k=N} \omega_k L_k$$

where the weights $\omega_k = \sum_{j=1}^{j=N} \lambda_{jk}$

Minimizing the sum of squares

$$S^2 = \sum_{l=1}^{l=M} \left(E_{tot}^l - \sum_{k} \omega_k L_k^l \right)^2$$

over M events with respect to ω_k leads to

$$\sum_{k=1}^{k=N} \left< L_j L_k \right> \omega_k = \left< E_{tot} L_j \right>$$

where $\left< >$ implies average over events.

This leads to the matrix inversion solution $\omega_k = \sum_{j=1}^{j=N} M_{jk} d_j$ where M is the inverse of the matrix $\left< L_j L_k \right>$ and d_j is the vector $\left< E_{tot} L_j \right>$

The process needs to be iterated to obtain stable weights.

The results converge after several iterations shown in the graph below (preliminary).
energy calibration : method 3

MIPP is investigating the use of hadrons for EMCAL calibration. EMCAL and HCAL calibration are fit simultaneously. Hadrons will leave some fraction of their energy in EMCAL for example via producing π^0 which decays into two gammas.

Top graph on left shows the fraction of energy deposited into EMCAL. Bottom - EM fraction vs total energy. Most of the time the protons make small contribution. In some events it contribute high fraction of energy - up to 60%. This fraction might be higher for π^- particles due to possible $\pi^- + p \rightarrow \pi^0 + n$ process.

The EMCAL weights as a function of fraction f_{EM} can be extrapolated to $f_{EM}=1$ to yield the EMCAL calibration.
Search for Neutrons from the elastic proton to neutron charge exchange reaction ($E_n \approx P_o$).

- beam - 35 and 59 GeV/c protons
- target - LH2, Carbon, and Beryllium
- veto on events with forward-going charged tracks based on the downstream wire chambers
- veto on events with TPC tracks matched to the incident beam tracks

Proton→neutron elastic charge exchange candidate event. Incident beam momentum: 59 GeV/c on Carbon target. Deposited energy into EMCAL - 0.5 GeV, into HCAL - 57.0 GeV.
neutrons, cont.

Top graph: EMCAL and HCAL plane ADC sums for the neutron sample.

Middle graph: HCAL ADC sum for the neutron sample. Green colored events - 35 GeV/c and red - 59 GeV/c data.

The ratio of calorimeters energy to proton beam momentum for the neutron sample.
MIPP collected 31M events with different incident particles and targets.

EMCAL and HCAL were energy calibrated with $e^- (e^+)$ and hadrons.

More calibration studies are in progress.

Will test EMCAL performance by reconstructing $\pi^0 \rightarrow \gamma \gamma$ and HCAL with neutron data.