ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

PDF Version Also Available for Download.

Description

Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic ... continued below

Physical Description

PDF-file: 5 pages; size: 0.6 Mbytes

Creation Information

Nelson, S; Poole, B & Caporaso, G June 15, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam.

Physical Description

PDF-file: 5 pages; size: 0.6 Mbytes

Source

  • Presented at: 2007 Particle Accelerator Conference, Albuquerque, NM, United States, Jun 25 - Jun 29, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-231949
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 909929
  • Archival Resource Key: ark:/67531/metadc889406

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 15, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 23, 2016, 6:04 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nelson, S; Poole, B & Caporaso, G. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS, article, June 15, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc889406/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.