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Abstract  

The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities 

for handling radioactive evidentiary materials and there are no established FBI methods or 

procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary 

value.  One experimental method for the isolation of HE residue involves using solid phase 

microextraction or SPME fibers to remove residue of interest.  Due to their high affinity for 

organics, SPME fibers should have little affinity for most metals.  However, no studies have 

measured the affinity of radionuclides for SPME fibers.  The focus of this research was to 

examine the affinity of dissolved radionuclide (239/240Pu, 238U, 237Np, 85Sr, 133Ba, 137Cs, 60Co and 
226Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) 

for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results 

from radiochemical and mass spectrometric analyses indicate these metals have little measurable 

affinity for these SPME fibers during conditions that are conducive to HE residue uptake with 

subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.  

 

Disclaimer:  This was a feasibility study for demonstration of method and not a final product.  The 

methods used for the analyses of the HE are not those used by the FBI, and it should not be implied that 

the data shown for GC/MS or LC/MS are acceptable for court admission as presented. 
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Introduction 

Radioactive evidentiary materials present considerable challenges to examiners that need to 

conduct traditional forensic analyses on them.  These types of materials raise worker health and 

safety concerns due to the risks associated with potential radiation dose, radionuclide uptake and 

radioactive contamination. Activities of this nature require numerous controls to protect those 

that work with these hazardous materials.  The Federal Bureau of Investigation (FBI) Laboratory 

does not have the on site capability to permit the examination of radioactively-contaminated 

evidence.  The successful decontamination of evidentiary materials will allow traditional forensic 

examinations to occur within FBI Laboratories.  There are few proven procedures to 

decontaminate (or �decon�) types of traditional evidence forms that contain radioactive 

materials.  When decontamination is not entirely possible, the partial decontamination of 

evidence items without compromise to their evidentiary value will help permit examiner 

handling under lower radiation exposure conditions.  These types of traditional examinations of 

contaminated radioactive evidence could occur at an FBI Partner Laboratory, such as at the 

Savannah River National Laboratory (SRNL, Aiken, SC) or at Lawrence Livermore National 

Laboratory (LLNL, Livermore, CA).   

 

Methods for the qualitative and quantitative analysis of high explosive (HE) residue materials in 

various matrices typically require a concentration step to isolate the residue from its host matrix. 

These methods are typically dependent on host matrix type (solid, liquid, gas).  Some of the 

methods used to recover and concentrate HE (organic) residue are solvent extraction, membrane 

separation, solid phase extraction (SPE), supercritical CO2, and solid phase microextraction 

(SPME).[1,2,3,4,5,6,7]  Several types of commercially available SPME fibers have an affinity for HE 

and FD residue under various exposure conditions and they are attractive to use for radionuclide 

decontamination.  The SPME fibers help eliminate some of the disadvantages associated with 

other HE recovery methods such as column plugging and their usage does not require large 

volumes of (potentially mixed and highly flammable) organic solvent wastes, which could 

potentially interfere with the radionuclide decontamination (if the solvents also have an affinity 

for the radionuclide).  Additionally, the SPME fibers offer high sensitivity during gas or liquid 

chromatographic analyses and the fibers can be quickly analyzed radiometrically to determine 

their level of radioactivity after exposure to HE residue. 



 

For this work, several radioactive isotopes were identified (as listed in the methods section) that 

could be present in radioactively-contaminated evidence.  When in a dissolved form, these 

radionuclides could potentially adsorb to the SPME fibers during HE extraction from aqueous 

solutions.  For experimental purposes, this list was often modified to allow for substitutions of 

radionuclide surrogates�to limit worker radiation dose during testing.  For example, stable Cs 

was substituted for radioactive 137Cs.  Due to their highly selective affinity of SPME fibers for 

organic and other non-ionic (hydrophobic) species, they should have little affinity for 

radionuclides, which are inorganic and charged when dissolved in solution.  However, no studies 

have examined the affinity of radionuclides for SPME fibers at the exposure conditions that 

favor HE uptake.  One minor goal of this work was to examine the application of SPME fibers 

for radioactive decontamination of HE residue.   

 

We performed these studies with as little change to the FBI protocol as possible, with the 

exception of using SPME fibers, the introduction of potential radionuclide metals (using 

surrogates) and a setup that was appropriate for remote operations in a shielded radioactive hot 

cell.  The overall goal of this study was to examine the use of SPME fibers for HE residue uptake 

(and decontamination) from aqueous solution under conditions that are most conducive to 

radioactive shielded cell operations in the presence of radionuclide metal surrogates.   

 

Methods  

For the HE decontamination, we examined a variety SPME fibers and solution conditions for HE 

decontamination.  We tested five commercially-available SPME fibers (listed Table 1): the PA, 

the PDMS fiber with a DVB polymeric coating (PDMS-DVB) the PDMS, the PDMS fiber with a 

carboxen coating (CBX-PDMS) and the carbowax fiber with a DVB coating (CW-DVB) series 

for their affinity for radionuclides and radionuclide surrogate metals.  In general, we used two 

pH conditions (pH 2 and 9.5) and two salt concentrations [0.0 and 0.23 M Na2SO4].  The first set 

of experiments performed with SPME fibers was conducted to screen a large number of 

radionuclides and radionuclide surrogates (in pH 2 and 9.5 solutions, at two known salt 

concentrations) for their affinity for the several types of SPME fibers.  For the first set of 

experiments, two tests were conducted in the same manner, one with solutions that contained 



non-radionuclide metals and the second with solutions that contained only radionuclide metals.  

A second set of tests (commonly referred to as the �second set of tests�) was performed to 

determine the affinity of the SPME fibers for very low levels of dissolved radionuclides.  A third 

set of tests was performed with non-radioactive surrogates in the presence of HE residue using 

SPME liquid phase sampling.  A set of SPME tests were performed to demonstrate the analysis 

of the five thermally labile HE analytes by LC/MS.  These analyses of RDX, HMX, Tetryl, NG, 

and PETN were conducted because all of these analytes responded poorly or not at all when 

analyzed by GC/MS.   

 
For these studies, several radionuclide metals were targeted for testing: [americium (241Am), 

cobalt (60Co), curium (as 244, 245Cm), iridium (192Ir), cesium (as 134, 137Cs), neptunium (227Np), 

nickel (as 59, 63Ni), plutonium (as 239, 240, 241Pu), radium (226Ra), strontium (90Sr), technetium 

(99Tc), and uranium (as 235, 238U)].  Most of these isotopes are the products of nuclear fission 

reactions.  Many of them have commercial uses.  Some of these isotopes such as 192Ir are used in 

hospitals for chemotherapy.  Others like 241Am are used to help detect smoke in smoke detectors. 

There are also naturally-occurring isotopes (e.g., 226Ra and 238U) that can be found in geologic 

ore deposits.  To limit the radiation exposure to the workers during the experiments to a level as 

low as reasonably possible, surrogate radionuclide elements (when possible) were selected for 

use in this study.  For 59, 63Ni, 60Co, 90Sr, 134, 137Cs, and 192Ir, we used the stable isotopes of the 

elements.  Some of the elements that we selected did not have stable isotopic forms so surrogates 

were selected (listed in  along with the rationale for their selection).  All isotopes of the 

elements of U, Np and Pu are radioactive and these three radioactive elements are part of the 

larger elemental �actinide� group.  Some actinide isotopes (such as 

Table 2

238U) are less radioactive 

than other actinide isotopes (such as 235U).  Relative to the high activity isotopes, these lower 

activity isotopes present less of a hazard to the radiation worker.  Therefore, we selected the 

isotopes of the actinides based on activity levels and on radioisotope availability at our facility.   

 
 
Methods for First Set of SPME Tests 
 
The solutions used during the SPME exposure test were made to have the approximate dissolved 

metal and salt concentrations that are listed in  



Table 3

Table 3

 and .  The target concentrations of the radionuclide and radionuclide surrogate 

elements were selected after performing calculations to determine what dissolved concentrations 

of these 11 metals would be completely dissolved and not supersaturated or saturated (or prone 

to precipitation) in the solutions.  The solution speciation computer program called MINTEQA2 

was used to perform these equilibrium-based calculations.

Table 4
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[8]  We used this aqueous geochemistry 

program to calculate the solubility of metals of a known valence in waters of known pH and salt 

concentrations.  The calculations were performed based on the test solution constituents (such as 

pH and 0.23 M Na2SO4 concentration) in addition to targeted concentrations of the metals of 

interest.  When the model predicted the metals would be supersaturated with respect to a 

precipitating phase, the modeling was repeated using a lower initial metal concentration until the 

results predicted that there was at least one order of magnitude lower concentration of metal than 

that required for precipitation.  In all cases, the dissolved metal concentrations that we used 

(based on the modeling) were less than 1 mg L-1. When thermodynamic data were available in 

the MINTEQA2 database for the metals we intended to study, we used that data for our 

calculations.  In some cases, we had to use analog data.  For Re(+VII), we used thermodynamic 

data in the MINTEQA2 database for Tc(+VII) and for Nd(+III), we used the thermodynamic 

data for Am(+III).  Thermodynamic data for Am(III) (in MINTEQA2) was used because the 

dataset was more complete than that for Nd(III).  No thermodynamic solubility data were 

available in the MINTEQA2 database for the noble metal Ir. However, water solubility data for 

Pt, which is also a noble metal with a similar +IV charge and size were used for comparison to 

Ir(+IV).[9]  The modeling was conducted for two groups of metals.  Those metals in solutions that 

were radioactive (i.e., actinide-containing, with U, Pu and Np) and for solutions that were not 

radioactive (i.e., with stable radionuclide surrogates).  Therefore, as noted in  and 

, the two types of solutions that were modeled with MINTEQA2 were also prepared and tested 

separately�a radioactive actinide-containing solution and a non-radioactive metal-containing 

solution.   

 

Stock solutions of the selected metals were made in 0.01 or 1.0 M trace metal grade nitric acid 

(Optima Grade) using reagent grade chemicals: Nd(NO3)3�6H2O, Co(NO3)2�6H2O, CsNO3, 

Sr(NO3)2, BaCl2�2H2O, Ni(NO3)2�6H2O, ReO2, and high purity solutions of: Ir(IV) (10 mg L-1), 



239,240Pu(IV) (0.972 mg L-1, with approximately 94% 239Pu and 6% 240Pu), 237Np(V) (2.68 mg L-

1) and 238U(VI) (10,000 mg L-1).  A salt solution containing 0.23 M Na2SO4 (using reagent grade 

material) was made and treated with 0.2 g L-1 of monosodium titanate (MST) solids to remove 

�tramp� metals (such as non-radioactive Sr, Co and Cs ions by sorption on the MST particles) 

that were associated with the reagent grade Na2SO4.[10]  All stock and diluted stock solutions 

were prepared in Teflon� bottles to help limit container adsorption by the metals. 

 

For the pH 2 tests, 1 M nitric acid stock solutions containing the target metals were diluted 1:100 

using de-ionized water or 0.23 M Na2SO4 to give the approximate dissolved elemental 

concentrations listed in  and .  For the pH 9.5 tests, the 0.01 M stock solutions 

were diluted 1:100 using de-ionized water or 0.23 M Na
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2SO4 and the pH was adjusted by the 

stepwise addition of 0.01 M NaOH until the pH was near 9.5.   

 

Manual injection [for gas chromatography (GC) analyses] SPME fibers were procured from 

Supelco, Inc. (Bellefonte, PA).  The conditioned fibers were assembled in the manual sample 

holders and exposed to the test solutions.  The SPME fiber exposure times were 30 minutes.  

Fifteen milliliter (mL) volumes of test solution were placed in 20-mL plastic high-density 

polyethylene vials (with Teflon� lined caps).  The SPME fibers were immersed in the solutions 

at equal heights so that the SPME fibers were immersed at equal depths in the solutions.  The 

radionuclide and surrogate solutions were stirred (rapidly) by magnetic stir plates using trace 

metal grade nitric acid-washed Teflon� mini-stir bars during SPME exposure.  The SPME tests 

were performed in triplicate.  All SPME fibers were rinsed with ~1 mL of de-ionized water after 

use and the rinse solution was added to the exposure solution.  Each set of SPME fiber tests had 

a control.  The control solutions (which were not exposed to the SPME fibers) were tested in 

triplicate. 

 

After the rinse solution was added to the exposure solution, the solution was acidified to pH 2 

with trace metal grade nitric acid (when required) and sent for analysis by Inductively Coupled 

Plasma-Mass Spectroscopy (ICP-MS).  We analyzed these aqueous solution samples by ICP-MS 

for the metals of interest.  Internal standards with 0.050 mg L-1 of bismuth and indium were used 



in all measurements.  Due to isobaric interferences and the high ionic strength �background� 

from the 0.23 M Na2SO4 salt, matrix matching for some solutions was required.  Therefore, the 

standards used for the analyses of the 0.23 M Na2SO4 SPME test solutions were made using a 

0.23 M Na2SO4 solution that had been acidified to pH 2 with trace metal grade nitric acid. 

 

The SPME fibers from the pH 2 and pH 9.5 (high salt) radionuclide studies were saved for 

radiometric counting (gamma counting of 237Np and alpha counting for 238U, 237Np and 239,240Pu). 

The five types of SPME fibers that were exposed to the pH 2 and pH 9.5 solutions (one set of 

five fiber types for each test pH) were gamma counted simultaneously in the old Whole Body 

Counting Facility (WBC) at SRNL by high resolution gamma-ray spectrometry.  This WBC is 

surrounded by 0.46 m of pre-World War II battleship steel and 0.65 cm of low background lead 

to reduce the background inside the counting chamber. A 30% [relative to a 5 by 5 cm2 NaI 

(sodium iodide) detector] efficient high purity germanium (HPGe) gamma-ray spectrometer is 

located inside the counting chamber.  All five fibers from each set of pH 2 and 9.5 tests were 

initially counted together in their metal sheaths by placing the bagged fibers, still in the fiber 

sheath, directly on top of the HPGe crystal.  Spectra were acquired for 24 hours.   

 

These gamma counting results provide information on whether the samples had low enough 

levels to be counted in our low-level facility.  However, these counting measurements do not 

provide information on whether the counts were coming from the metal sheath or from the 

SPME fiber inside the metal sheath.  To determine if the contamination was on the SPME fiber 

itself or on the fiber sheath the pH 2 fibers were separated from their protective metal sheaths 

and the separated fibers were counted individually in the Underground Counting Facility (UCF); 

the sheaths were re-counted in the WBC.  The UCF has a 90% efficient HPGe spectrometer 

which is shielded by more than 12 m of overburden and surrounded by 1.2 m of specular 

hematite (Fe2O3) and pre-World War II battleship steel.  Further background reduction in the 

UCF is obtained by removing particles in the air with high-efficiency particulate air filters 

(HEPA filters), by displacing radon (222Rn) gas near the detectors using the liquid nitrogen boil-

off, and by preventing contamination using clean room controls.  The five separated SPME fiber 



samples were individually counted in an HPGe well type detector overnight (85,000 seconds).  

The data were analyzed using customized software for low-level counting. [11]   

 

For the alpha spectrometric analyses, the unsheathed fibers were also counted for alpha-particle 

radioactivity.  Low-level alpha spectrometry surface scintillation barrier detectors are located in 

the Ultra Low-Level Counting Facility (ULLCF).  The radiological counting background in the 

ULLCF is minimized using clean room techniques and HEPA filtered air supply.  The SPME 

fiber samples were mounted on 1.905 cm stainless steel planchets with double-sided stick tape.  

The 238Pu and 239+240Pu activities on the mounted fibers were determined by alpha spectrometry.  

Samples were counted for approximately 6 days in an Ortec Octet� alpha spectrometer 

equipped with Canberra 450 mm2 passive ion implanted (PIPs) detectors.  Because the fibers 

were of a nonstandard geometry (i.e., they were not infinitely flat), the detector efficiency was 

approximated using a standard 1.90 cm electrodeposited source.  

Second Set of SPME Experiments 

A second set of tests were conducted to determine the affinity of low levels of radionuclides for 

the SPME fibers to confirm the earlier results.  A standard solution was prepared that contained 

2000 to 5000 pCi each of 137Cs, 85Sr, 133Ba, 226Ra and 60Co in a 0.01 M nitric acid solution.  Tests 

were only performed at pH 2 and concentrated salt solutions were not used.  Fifteen mL aliquots 

of this solution were poured into 22-mL scintillation vials and exposed to the SPME fibers for 15 

minutes using a magnetic stirrer and mini-stir bar.  The height of the SPME fibers was the same 

as in previous tests.  Tests with the PDMS, CW and PDMS-DVB were done in triplicate.  Tests 

with PA and CBX-PDMS fibers were done in duplicate.  For the radiometric analysis of the 

SPME fibers and test solutions, a known aliquot of the starting solution, and the residual 

solutions after the SPME exposures were counted in the WBC�as previously described.  Test 

and control solutions were counted for several thousand seconds.  For improved counting 

statistics, some of the sheathed fibers were counted for longer periods (i.e., overnight). 

Third Set of SPME Experiments 

A third set of tests was performed to evaluate non-radioactive metal uptake in the presence of 

dissolved HE residue. The HE equilibrations were performed using 500 ng quantities of HE 



residue [specifically 2, 4, 6-trinitrotoluene (TNT), p-nitrotoluene, ethylene glycol dinitrate 

(EGDN), nitroglycerin (NG), pentaerythritol-tetranitrate (PETN), 2, 4-dinitrotoluene, tetryl, 

octagen (HMX), hexogen (RDX)] and a taggant called 2, 3-dimethyl-2, 3-dinitrobutane 

(DMDNB).  The HE originated by custom order through Restek Corp. (Bellefonte, PA).  In 

duplicate, two items [5.0 g of a sandy-loam soil from Alabama and a ~2 cm by 2 cm by 0.5 cm 

pipe bomb fragments (supplied by the FBI)] were spiked with the 500 ng of HE residue in water 

(a 100 µL volume).  The soil and pipe bomb fragments were allowed to dry in air for one hour.  

After the drying period, a 5 and 15 mL volume of a pH 5 solution containing approximately 5 to 

20 µg L-1 of (non-radioactive) Co, Zr, Nb, Ru, Cs, Ba, Nd and Ir was added to the soil and pipe 

bomb fragment (respectively).  These quantities of solution permitted complete immersion/ 

saturation of the soil and roughly 50% immersion of the pipe bomb fragment in sealed glass 

vials.  The mixtures were sonicated in perforated tray that was suspended in a water bath.  The 

pipe bomb fragments were turned over after the first hour of sonication so that the other sides of 

the fragments could be sonicated in the added metal solution for another hour.  The soils were 

sonicated for no less than one hour.  After the sonication, the solution in contact with the soil was 

filtered using a 0.2 µm Anotop filter.  The pipe bomb solution was not filtered.  The resulting 

solutions were exposed to pre-conditioned PDMS-DVB SPME fibers for 25 to 30 minutes in 

glass vials of a geometry that permitted complete immersion of the SPME fibers.  The volume of 

water resulting from the soil sample exposure was too low to allow stirring during SPME 

exposure.  In contrast, the 15-mL volume of water from the pipe bomb fragment was large 

enough to permit stirring during SPME exposure.  Similar SPME studies in the absence of the 

non-radioactive metals were performed using cell phone and circuit-board fragments.  These 

studies with the cell phone and circuit board fragments were performed with five of the analytes 

(NG, HMX, RDX, PETN and tetryl).   

 

To confirm the uptake of HE in the presence of non-radionuclide metals, the SPME fibers were 

analyzed using GC and detection by mass spectrometry (GC-MS).  Analytical separations were 

carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 30 m DB-5 column, 

with 0.25 mm diameter and 0.25 µm film thickness. Split/splitless injection was used. 

 



Detection of the HE was performed using a Hewlett Packard 5973 mass selective detector and 

selective ion monitoring.  The mass spectrometer tuning was confirmed within 24 hours prior to 

each HE and FD measurement using perfluorotributylamine.  For the HE analyses, the injector 

temperature was 220 ºC.  The flow rate of helium was 24.1 mL minute-1.  The initial oven 

temperature was 50 ºC, which was held for one minute upon SPME addition.  The oven was then 

ramped to 240 ºC at a rate of 12 ºC min-1 and held at 240 ºC for 9 minutes.  The SPME fiber was 

desorbed in the injector for a period of 5 minutes and the solvent delay was 4 minutes.  This 

method was adapted from Furton et al. (2000) [12].  Mass ranges of the scan were between 25 and 

250 mass units. 

 

The liquid chromatograph / mass spectrometer (LC/MS) used with SPME for detection of 

selected (thermally-labile) HE analytes was an Agilent 1100 binary pump with a Micromass 

Quattro LC triple quadrupole mass spectrometer.  The LC column consisted of a Chromegabond 

WR C18 column (15 cm by 2.1 mm) with 5 µm particles and 120 Å pore size from ES 

Industries.  The ionization mode was electrospray in negative ion mode.  For the HE analysis, a 

mobile phase of 60:40 methanol:water with 1.25 mM ammonium nitrate was used in isocratic 

mode at 200 uL/min.  Fibers were prepared as above, except that LC compatible fibers were used 

and an SPME-HPLC interface was used for the fiber desorptions. 

 

Results 

First Set of SPME Fiber Studies with Radionuclide and Non-Radionuclide Surrogates 

The solutions from these studies were analyzed by ICP-MS.  The results of the analyses for the 

non-radioactive and actinide elements are listed in Table 5 and Table 6.  These tables list the 

percentage of metal in solution after the SPME exposure relative to that of the controls.  Table 5 

and Table 6, the percentage of metal in solution after SPME exposure compared well with that 

of the control.  Hence, the difference between the treatments and the controls is within the error 

of the measurements, which was usually about a few percent.  The Re measurements by ICP-MS 

have greater error associated with them.  This is due to the low level of Re used in these tests 

(near 10 µg Re L-1) because there is always more error in the measurement of elements at low 

concentrations than at higher concentrations.  The results in Table 6 are similar to that of Table 



5.  The coefficient of variation (which is a unit-less value) was calculated so that the error could 

be shown as a percentage.   In general, the results are similar to that of the previous SPME tests 

with the non-radionuclide metals in that minimal radionuclide uptake is observed.  In all cases, 

there was good agreement between the control and the treatments and the measurements within 

each triplicate set were in good agreement�as indicated by the low coefficient of variation 

(complete data set not shown). 

 

In general, the ability of the ICP-MS instrument to measure concentrations of dissolved metals in 

the treatments and controls was acceptable and highly reproducible.  The measurements usually 

had less than a few percent in standard deviation of the mean for triplicate analyses (data not 

shown).  However, if the value of the standard deviation for these 238U measurements were 

converted to a mass of 238U, the amount of contamination would be low�a few hundred 

disintegrations per minute (dpm).  If the value of the standard deviation in the Cs measurements 

were converted from mass of Cs to dpm of 137Cs, the value for the 137Cs would be over 107 dpm 

(and be a radiation dose exposure concern).  This amount of 137Cs would be too high for 

decontamination purposes, but the level of U may be more acceptable for decontamination 

(although the acceptable levels for decontamination have not been determined).  This difference 

in dpm for Cs and U is primarily because the specific activity of 137Cs is several thousand-fold 

greater than that of 238U.   

 

The SPME fibers have a low affinity for the radionuclide and radionuclide surrogate metals but 

the error in the measurements was too large to conclude that a complete or near complete 

radioactive decontamination of the HE can be provided by the SPME method.  Additional low 

level studies were performed to obtain more information about radionuclide uptake.  The results 

of the ICP-MS analyses indicate that low levels of actinides could be on the SPME fibers.  

To better evaluate the actinide levels, the fibers were taken to a low contamination and low dose 

level facility for radiometric gamma ray and alpha-particle counting to determine the levels of 

Np, Pu and U on the SPME fibers and their protective metal sheaths.  Five intact SPME fibers 

(one of each type as listed in Table 1) from the low ionic strength pH 2 tests were initially 

counted together in the WBC to obtain a rough estimation as to the sample radioactive 



contamination levels.  The gamma ray spectrum of the five background corrected SPME fibers 

(exposed to the pH 2 actinide solutions) is shown in Figure 1.  As seen in the background 

corrected spectrum, there are two peaks that are identified in red at 312 keV and 661 keV.  The 

312 keV peak is due to 233Pa, the short-lived radioactive decay daughter of 237Np.  Although we 

added Pu and U, no gamma peak was identifiable at 129 keV (239Pu) or 1001 keV (238U).  The Pu 

and U isotopes that we added are not strong gamma X-ray emitters so at low loadings, large 

gamma peaks from these isotopes were not expected.  The spectrum for the five SPME fibers 

from the pH 9.5 exposures (data not shown) was nearly identical to the pH 2 spectrum shown in 

Figure 1.  The peak at 661 keV is due to 137Cs decay.  Although 137Cs was not added to the test 

solutions during these equilibrations, it was present in the spectra.  The high activity radioactive 

hood that was used for these equilibrations has a history of use with 137Cs.  The 137Cs 

contamination is most likely tramp contamination on the outside of the fiber sheath (from contact 

with contaminated gloves while handling the SPME fiber sheaths during testing).  Count rates 

for 233Pa and 137Cs were approximately 0.85 and 0.3 counts per minute (cpm) (respectively). 

 

After separation from the metal sheaths, each of the five fibers from the pH 2 exposure was 

found to contain approximately 1 pCi of 233Pa per fiber (data not shown).  The WBC HPGe 

recount of the five fiber sheaths found 233Pa (from 237Np decay) and 137Cs on the sheaths at a 

count rate of 0.25 and 0.3 cpm respectively (data not shown).  These results indicate that some of 

the 237Np is attached to the SPME fiber while the tramp 137Cs is found only on the fiber sheath.  

The amount of Pa atoms that correspond to 1 pCi of 233Pa is approximately 124000 atoms.  The 

level of 237Np is nearly equal to that of the 233Pa because the 237Np stock solution is greater than a 

half-year old and is in secular equilibrium with the 233Pa. 

 

Figure 2 shows the gamma-ray spectrum for the separated PA SPME fiber that was counted in 

the UCF.  The peaks associated with the short-lived 233Pa daughter of 227Np decay are indicated 

in these two figures.  The major peak at 312 keV is highlighted in the original WBC composite 

spectrum shown in Figure 2.  With the reduced background in the UCF the 233Pa X-ray peaks 

below 111 keV are clearly visible as are the minor peaks just below and just above the major 312 

keV peak (Figure 2).  The peak at 351 keV is due to 214Bi in the air from the decay of naturally 



ocurring 222Rn.  No peaks due to 235,238U (235U peaks are at 144 keV and186 keV and the 238U 

peak is at 1001 keV) are not visible in this or any of the other spectra. 

 

The alpha particle counting results indicate that the separated (un-sheathed) fibers contain a 

minute, but measureable amount of Pu.  As shown in Figure 3, the PA fiber contained the 

greatest amount of Pu.  The mass of the Pu in the PA fiber is 280 picograms (pg), which is about 

1011 Pu atoms.  Figure 3 shows the alpha particle spectrum from the PA fiber.  The low-energy 

peak tailing is due to the non-standard geometry of the fibers.  When samples are typically 

prepared for alpha spectrometry they are electroplated in a thin film deposit.  These samples 

were counted as is.  The peak energy maximums are used to identify the isotopes present in the 

sample.  The small amount of 237Np determined indirectly by gamma spectrometry at 4.7 keV 

and any 238U at 4.2 keV was not readily visible under the larger 239+240Pu-tail.  The spectrum is 

dominated by the Pu alpha particle spectrum.  However, we estimate the 238U and 237Np amounts 

(which if present are within the background noise) to be less than 1 % of the Pu counts.  

 

Uptake of the very low levels of Pu (determined by alpha counting) and Np (determined by 

gamma counting) by the PA fiber is potentially attributable to the fiber being made of a solid as 

opposed to a liquid (as with the other four fibers).  Relative to liquid coatings, solid coatings like 

PA tend to have slower uptake of materials.13  A more thorough rinsing after exposure to the 

actinide-containing solutions may lower the amount of entrained Pu and Np. 

Second Set of SPME Fiber Studies with Radionuclide Metals 

We performed a series of similar tests of a more limited scope with SPME fibers and trace levels 

of radionuclides.  By using low levels of dissolved radionuclides, we could increase our ability to 

observe low levels of metal uptake because there will be a larger amount of SPME fiber surface 

area relative to metal available for radionuclide sorption.  Additionally, by testing with very low 

but measurable quantities of radionuclides, we can increase our sensitivity to detect sorption 

from solution and on the SPME fibers by using radiometric methods as opposed to ICP-MS 

methods.  Figure 4 is a background corrected gamma ray spectrum of the control solution and 

Figure 5 is a background corrected gamma ray spectrum of the of the CBX-PDMS residual 

solution.  All the peak areas from the gamma ray counting for the SPME test solution were 



ratioed to the starting control solution and plotted in Figure 6.  The test solutions and control 

were counted for approximately 3000 seconds in the WBC.  As shown in the Figure 6 both PA 

fibers show a low level of 226Ra remaining in solution relative to the control solution based on 

the 186 keV photopeak.  The other radionuclides (137Cs, 85Sr, 133Ba, and 60Co) remained at 

similar levels to that of the control solution after SPME exposure and if any uptake of these 

radionuclides occurred during these studies, the amount of radionuclide that was removed by the 

SPME fibers was within the error of the instrumental measurement. 

 

To obtain better counting statistics for the PA SPME test, the solutions were re-counted and the 

individual PA SPME fibers were counted.  The results of the overnight PA solution counting are 

shown.  A typical spectrum from the PA1 SPME fiber is shown in Figure 7.  No detectable 

activity above background was found on the un-sheathed fibers.  With the longer count time and 

smaller counting error, the results indicate that the added 226Ra is present in the residual solution 

and not on the fibers.  In conclusion, none of these radioisotopes in this study appear to sorb to 

the SPME fibers�in the absence of HE residue. 

SPME Fiber Studies with Non-Radionuclide Metals 

Our next set of SPME tests were performed with non-radioactive metals in the presence of HE 

residue.  The HE tests were performed with soil and pipe bomb fragments.  The SPME exposures 

to the solutions from the sonication of HE-loaded materials resulted in the uptake of most of the 

HE compounds at levels that were detectable by GC-MS.  However, we observed with direct 

solvent injections that not all of the added HE compounds could be detected (at low hundred µg 

total quantities) with our GC analytical method.  An example chromatogram with a direct solvent 

injection is shown in Figure 9a.  Due to the thermal instability of some of the HE compounds 

such as RDX, tetryl and the NG-like compounds (EGDN, NG and PETN), these compounds 

were difficult to detect at lower levels.  An example chromatogram with 500 µg of HE mix by 

solvent injection is shown in Figure 9b.  For our GC-MS instrumentation setup, we could more 

readily detect RDX, tetryl, and the NG-like compounds at total initial exposure amounts of a few 

µg of HE.  The HMX, which is thermally labile in the GC-MS, was not detected by direct 

solvent injection or SPME technique. 

 



Liquid chromatography / mass spectrometry (LC/MS) was used to analyze five of the thermally-

labile HE analytes, including RDX, HMX, tetryl, NG, and PETN.  Using this chromatographic 

method with SPME sampling, these analytes were readily detected, although NG had a higher 

limit of detection.  Exemplary chromatograms from the LC/MS analysis of these analytes are 

shown in Figures 10a and 10b. 

Discussion 
 
Although this analytical approach does not answer the question of whether there was residue 

decontamination, we anticipate that there is significant decontamination during the SPME 

exposure process to dissolved HE residue. We obtained HE recovery at low (ng) levels in the 

presence of the non-radioactive metals, which indicates that they do not have a large negative 

effect on HE recovery during these treatments.  The low affinity of the radionuclides and the 

radionuclide surrogates for the SPME fibers indicates that SPME fibers show great promise for 

the separation of HE residue from radionuclides in aqueous solution.  The use of SPME fibers 

holds several advantages over solvent extraction in that use of the SPME fibers can produce 

lower detection limits.12  When a high level of decontamination is most needed due to high 

radiation levels in the specimens and flammable solvents are a safety concern, the use of the 

SPME fibers may be most amenable.  This is because of the potential ease of their use when the 

residue extraction requires the use of robotics�as is the case in conventional radioactive �hot� 

or �shielded� cell environments.  
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List of Tables 
 

Table 1 The SPME fibers used in these studies in addition to some of their major physical and 

chemical characteristics.* 

 

Fiber Coating Type Coating 

Stability 

Polarity Coating 

Porosity 

Coating 

Thicknes

s (µm) 

Polydimethylsiloxane (PDMS) Non-bonded Nonpolar Non-porous 100 

Polyacrylate (PA) Cross-linked Polar Non-porous 85 

Carbowax-Divinylbenzene (CW-

DVB) 

Cross-linked Polar DVB has 

mesopores 

65 

Carboxen- Polydimethylsiloxane 

(CBX-PDMS) 

Cross-linked Bipolar Carboxen has 

macro-, meso- and 

micro-pores for 

small molecules 

75 

Polydimethylsiloxane -

Divinylbenzene 

(PDMS-DVB) 

Cross-linked Bipolar DVB has 

mesopores 

65 

 
 
* Some of these SPME fibers are known to exhibit marginal uptake of HE (such as the PDMS).[13]  However, we 

tested the PDMS (only) fiber because PDMS is a component of the more effective SPME fibers that are 

recommended for use in HE extraction (such as the PDMS-DVB, which is a PDMS fiber with a DVB polymeric 

coating).  By studying the sorption properties of the select components of the fibers, we intended to isolate which 

coating (if any) exhibits significant radionuclide uptake.  This information could then be used to select alternative 

fibers for testing if need be.    

 
 
 
 
 
 
 



Table 2 Selection of radionuclide surrogates for initial SPME testing.  The isotopes of U, Np and 

Pu (called �actinide�) are radioactive and not listed below.  We did not select stable analogs for 

these elements because low specific activity isotopes were available. 

 

Target 

Radionuclide 

Non-

radioactive 

Surrogate  

Reason for Surrogate Selection Reference 

99Tc Re at natural 

abundance 

Re has a similar ionic radii (~0.70 Å), charge (+7) 

and electrochemical stability in solution and 

similar complexation behavior to that of Tc(VII) 

Dean (1999) [14] 

and Shannon 

(1976)[15]  
222Ra Ba at natural 

abundance 

Ba has a similar ionic radii (~1.42 Å), charge (+2), 

and coordination behavior in solution to that of Tc 

Dean (1999) [14] 

and Shannon 

(1976) [15]  
241Am,   

244,245Cm 

Nd at natural 

abundance 

Nd has similar ionic radii (~1.0 Å), charge (+3), 

electrochemical stability, and complexation 

behavior in solution to that of Cm(III) and Am(III) 

Dean (1999)[14] 

and Shannon 

(1976) [15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3 Target test conditions for the first set of tests with the SPME fibers with pH 2 solutions. 

     

 Non-radioactive Radioactive Non-radioactive Radioactive 

 pH 2 pH 2 pH 2 pH 2 

  Target Species 

Concentration  

[mg L-1] 

  

Na2SO4* none added none added 2300 2300 

Nd 0.34 none added 0.43 none added 

Co 0.52 none added 0.59 none added 

Cs 0.74 none added 0.78 none added 

Sr 0.30 none added 0.30 none added 

Ba 0.23 none added none added none added 

Ni 0.59 none added 0.59 none added 

Ir 0.10 none added 0.10 none added 

Re 0.15 none added 0.01 none added 

Np none added 0.54 none added 0.38 

Pu none added 0.12 none added 0.12 

U none added 0.48 none added 0.34 

 

* Na2SO4 concentrations are in moles L-1. 

 

 

 

 

 

 

 

 



Table 4 Target test conditions for the first set of tests with the SPME fibers with pH 9.5 

solutions. 

     

 Non-radioactive Radioactive 

Non-

radioactive Radioactive 

 pH 9.5 pH 9.5 pH 9.5 pH 9.5 

  

Target Species 

Concentration 

[mg L-1]   

Na2SO4* none added none added 0.23 0.23 

Nd none added none added none added none added 

Co 0.58 none added 0.02 none added 

Cs 0.66 none added 0.75 none added 

Sr 0.30 none added 0.31 none added 

Ba 0.42 none added 0.01 none added 

Ni none added none added none added none added 

Ir none added none added none added none added 

Re 0.09 none added 0.09 none added 

Np none added 0.18 none added 0.18 

Pu none added none added none added none added 

U none added 0.01 none added 0.01 

 

* Na2SO4 concentrations are in moles L-1. 

 

 



 

Table 5 Percentage of each added radionuclide surrogate element remaining in solution after the 

SPME fiber exposures--ICP-MS data for the treatments without Na2SO4. 

 

pH 
SPME 
Type*   Ni Co Sr Cs Ba Nd  Re Ir  Np U Pu 

              

2 1 Average (Mean) 98.7 97.3 106.9 102.8 97.5 101.0 116.0 101.2 106.4 107.5 109.2
  Coefficient of Variation 2.6 1.7 4.6 1.7 4.2 1.7 7.7 2.7 1.2 1.2 5.3 

2 2 Average 102.6 101.1 100.8 101.1 95.7 104.0 115.5 100.2 102.2 102.4 111.7
  Coefficient of Variation 1.7 0.7 0.3 0.7 0.8 3.2 21.7 0.4 3.9 3.9 8.0 

2 3 Average 98.1 98.3 92.6 98.1 94.2 98.7 91.4 95.1 91.6 92.6 93.2 
  Coefficient of Variation 2.4 1.7 0.7 2.2 8.7 2.6 9.5 2.2 1.6 1.8 10.0 

2 4 Average 99.2 101.0 100.1 99.8 106.9 100.9 98.0 100.4 106.7 106.4 124.7
  Coefficient of Variation 1.3 1.1 1.5 1.5 6.6 0.8 6.3 1.1 2.2 1.8 7.2 

2 5 Average 101.1 100.5 98.3 98.3 92.2 97.4 118.4 94.8 99.6 100.1 102.6
  Coefficient of Variation 3.4 2.5 2.9 2.2 7.9 1.9 9.2 2.0 0.7 0.7 8.5 

9.5 1 Average NT** 99.3 100.0 100.1 98.9 NT NT NT 98.8 122.9 NT 
  Coefficient of Variation  0.4 1.1 0.7 4.2       0.5 16.1   

9.5 2 Average NT 100.3 100.0 100.5 103.9 NT NT NT 99.6 101.8 NT 
  Coefficient of Variation  0.3 0.9 0.7 5.7       2.7 4.1   

9.5 3 Average NT 100.3 97.4 106.4 92.9 NT NT NT 100.1 90.1 NT 
  Coefficient of Variation  0.9 0.9 0.7 3.2       1.7 6.6   

9.5 4 Average NT 99.1 97.8 94.4 98.7 NT NT NT 101.9 101.9 NT 
  Coefficient of Variation  0.8 2.5 3.1 2.0       1.1 3.9   

9.5 5 Average NT 100.8 100.7 100.9 98.8 NT NT NT 100.1 103.4 NT 
  Coefficient of Variation   0.9 0.8 1.1 1.4       0.4 2.5   

* Fiber type: 1 = Polydimethylsiloxane/divinylbenzene; 2 = Carboxen; 3 = Divinylbenzene/Carbowax; 4 

= Polydimethylsiloxane; 5 = Polyacrylate 

** NT = Not Tested 

 

 

 



 

 

Table 6 Percentage of each added radionuclide surrogate element remaining solution after in the 

SPME fiber exposures--ICP-MS data for the treatments with 0.23 M Na2SO4. 

pH 
SPME 
Type*   Ni Co Sr Cs Ba Nd  Re Ir  Np U Pu 

               
2 1 Average (Mean) 132.0 121.1 121.1 110.3 100.7 105.1 94.5 87.5 99.0 99.5 94.1 
  Coefficient of Variation 1.5 1.5 1.4 0.7 12.1 1.1 8.5 1.6 1.6 1.4 3.6 

2 2 Average 112.7 101.1 98.6 97.5 82.3 131.4 104.3 112.2 96.8 97.2 98.7 
  Coefficient of Variation 11.9 1.7 0.9 1.0 8.7 29.5 18.9 11.9 1.0 0.8 3.3 

2 3 Average 98.0 97.7 96.9 96.8 112.1 96.7 100.0 97.6 100.5 98.4 105.4
  Coefficient of Variation 1.4 1.0 3.0 1.4 32.1 1.4 0.0 1.4 2.0 1.6 2.3 

2 4 Average 104.4 106.1 104.8 101.6 99.6 103.1 103.7 101.1 100.4 100.1 98.1 
  Coefficient of Variation 1.8 2.2 0.9 1.2 20.0 0.8 11.1 0.9 1.40 1.6 3.0 

2 5 Average 94.6 95.3 96.0 99.1 128.2 96.4 145.4 101.4 99.8 91.1 99.8 
  Coefficient of Variation 3.6 3.2 2.4 2.8 25.8 2.3 18.1 1.2 1.3 1.2 3.5 

9.5 1 Average NT** 108.9 97.5 98.1 100.7 NT NT NT 106.1 99.4 101.5
  Coefficient of Variation  2.8 0.4 1.1 11.5      9.8 1.4 3.1 

9.5 2 Average NT 96.1 105.0 99.8 78.2 NT NT NT 124.7 101.2 100.2
  Coefficient of Variation  11.4 2.2 2.8 16.2      14.8 1.4 2.6 

9.5 3 Average NT 95.1 79.2 99.1 110.1 NT NT NT 56.7 95.9 95.6 
  Coefficient of Variation  5.3 2.1 1.2 17.7      15.4 0.7 2.3 

9.5 4 Average NT 116.8 103.0 102.6 93.6 NT NT NT 123.5 95.7 93.9 
  Coefficient of Variation  7.1 2.2 1.0 13.5      15.4 2.1 3.1 

9.5 5 Average NT 87.3 113.2 113.3 130.7 NT NT NT 99.0 98.9 87.2 
  Coefficient of Variation   2.7 5.4 7.4 3.6       14.3 1.6 9.9 

* Fiber type: 1 = Polydimethylsiloxane/divinylbenzene; 2 = Carboxen; 3 = Divinylbenzene/Carbowax; 4 

= Polydimethylsiloxane; 5 = Polyacrylate 

** NT = Not Tested 

 

 

 

 



 

Table 7 Alpha particle counting results for the five SPME fibers from the pH 2 exposures.  An 

overall uncertainty of 20 % was applied to account for the geometry difference between the 

fibers and the standard, and the excessive peak tailing caused by self absorption of alpha 

particles by the fibers. 

 

SPME Fiber 238Pu (pCi)1 239+240Pu (pCi) 238Pu (pg)* 239+240Pu (pg) 

CBX-PDMS 0.27 7.4 0.016 105 

PDMS-DVB 0.27 8.8 0.016 125 

CW-DVB 0.15 4.7 0.009 67 

PDMS 0.22 7.4 0.013 105 

PA 0.65 19.9 0.038 282 

 

*Although we did not purposely add 238Pu, the low levels of this Pu isotope in the 239,240Pu that we used 
were detectable.  These results indicate that our source of the 239,240Pu was not entirely pure.  However, 
the high specific activity of 238Pu makes its detection at low levels much more possible than similar 
concentration levels of the other two 239,240Pu isotopes in the sample.
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Figure 2 Gamma X-ray spectrum for a polyacrylate (PA) SPME fiber from the pH 2 exposures. 

 

 

 

 

 

 



 

 

 

Figure 3 Example of the alpha counting spectrum for the PA SPME fiber (pH 2 low ionic 

strength solution exposure). 
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Figure 4 Gamma energy spectrum for the radionuclide control (starting) solution used in the 

low-level radionuclide exposures with the SPME fibers.
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Figure 5 Gamma energy spectrum of the low level radionuclide solution after exposure to a 

CBX-PDMS SPME fiber. 
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Figure 6 Plot of the gamma counting data showing the percent radionuclide remaining in 

individual solutions after SPME exposure.   The numbers after the chemical symbols (for Ba and 

Co) in the legend represent the gamma ray energies (in keV) that were counted.  For Ra, Cs and 

Sr, one gamma ray energy was monitored during counting. 
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Figure 7 Overnight counting results of the polyacrylate (PA) SPME fibers that were exposed to 

low levels of radionuclides�in addition to duplicate analyses of the control solution.   

The numbers after the chemical symbols in the legend represent the gamma X-ray energies (in 

keV) that were counted.  For Ra, Sr and Cs, only one gamma X-ray energy was used for 

counting. 
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Figure 8 Gamma X-ray spectrum for the polyacrylate (PA) SPME fiber that was exposed to the 

low level radionuclide solution.  The peaks for the labeled radionuclides are nearly within the 

background noise of the low level counting instrument.  
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Figure 10  LC/MS analysis of five selected HE analytes which were too thermally labile for GC-

MS analysis.  Trace (A) is a blank spiked with analytes, and Trace (B) is a matrix spike of cotton 

swab spiked with analytes, then extracted in aqueous sodium sulfate.  Both were extracted with 

SPME fiber (PDMS/DVB) and solvent desorbed by LC/MS.  The shoulder on the tetryl peak in 

trace (A) is nitroglycerin.  The first peak in Trace B is an artifact of the matrix.  
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