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Simultaneous interferometric optical-figure characterizations for two optical elements in 

series: Proposition of an unconventional numerical integration scheme 

 

 

Abstract: 

 

The article proposes a scheme to break a catch-22 loop in an optical-

figure/wavefont measurement.  For instance, to measure the tilt-independent optical-

figure of a nominal optical flat at cryogenic temperatures, it requires a cryogenic dewar-

window system for a Fizeau interferometer outside the dewar to see through.  The issue 

is: how to calibrate in situ the window system using the yet-to-be-calibrated nominal 

optical flat, and vice versa, in only one cryogenic cooldown?  The proposition includes: 

a) interferometric phase-map measurements with the test piece slightly offset in different 

transverse directions, and b) for synthesizing the 2-dimentional WDF, an unconventional 

numerical scheme starting with 1-dimentional bi-direction integration.  The numerical 

scheme helps minimize the non-uniformity in integrated noise-power distribution that 

results from integrating data, and thus the associated uncorrelated random noise, from 

raw phase-maps.  The numerical scheme represents a new concept specifically for 

integrating noise-carrying experimental data. 

 

 

Subject terms:  
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1. BACKGROUND 

 

The article proposes a scheme to break a catch-22 loop in an optical-

figure/wavefont measurement.  For instance, to measure the tilt-independent optical-

figure of a nominal optical flat at cryogenic temperatures, it requires a cryogenic dewar-

window system for a Fizeau interferometer outside the dewar to see through.  “For 

description of Fizeau interferometry, see Reference 1.”  The issue to be addressed is: how 

to calibrate in situ the window system using the yet-to-be-calibrated nominal optical flat, 

and vice versa, in only one cryogenic cooldown?  The proposition includes: a) 

interferometric phase-map measurements each with the test piece slightly offset in a 

different transverse Cartesian direction, and b), for synthesizing the 2-dimentional (2-D) 

wavefront distortion (WD), an unconventional numerical scheme starting with 1-

dimentional (1-D) bi-direction integration.  The numerical approach may help minimize 

the non-uniformity in integrated noise-power (NP) distribution that results from 

integrating data, and thus the associated uncorrelated random noise, from raw phase-

maps.  Herein, NP refers to the square of rms noise. 

 

 Upon cooling, optical-path lengths change.  Consequently, it has been a challenge 

to perform interferometric optical-figure measurements at cryogenic temperatures.  This 

is true even when measuring nominally flat optical components.  One usually has to 

resort to assumptions, verifiable or not, making measurement results "interpretable" as 

well as questionable.  In this type of measurements, one normally sets up the Fizeau 

interferometer mainframe at room temperature in front of the cryogenic dewar window 
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system.  If the test piece were at room temperature, one would simply use a window 

system with its WD pre-calibrated with a reference flat that has a known 

room-temperature optical figure.  The problem is in most cases such a calibrated 

reference flat is unavailable for the pertinent cryogenic temperature.  In other words, one 

would start with either a cryogenically calibrated window system or a cryogenically 

calibrated reference flat.  However, normally neither is available. 

 

 On the other hand, to calculate rather than directly measure the window-system 

WD, detailed information would be needed on the profiles of temperature, thermal-

expansion coefficient (TEC), refractive index, mounting strain, etc.  Unfortunately, these 

multivariate profiles are all difficult, if not impossible, to explore realistically.  Of course, 

one might want to search for a reference flat with a sufficiently low TEC making the 

difference in optical figure negligibly small between room temperature and the cryogenic 

temperature of concern.  However, it is extremely difficult to meet such requirements on 

TEC.  For example, according to Reference 2, an exceptionally high quality fused quartz 

may have a spatial variation in TEC approximately equal to 20 ppb/K per cm as 

linearized over the range of [4, 300] K.  Consequently, for a 15-cm diameter and 2.5-cm 

thick parallel reference flat made out of this material, the single-pass transmitted WD at 4 

K could well be on the order of one wavelength in the visible, even if the flat were 

originally perfect at room temperature as far as its parallelism and refractive-index 

homogeneity are concerned.  This implies that, to obtain an accuracy of λ /20 in 

measurement (where λ =  633 nm), one would need a TEC of ~1 ppb/K per cm, which is 

twenty times more demanding in comparison with what the state-of-the-art may provide.  
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 To solve the problem, proposed is a straightforward scheme that may characterize 

the tilt-independent part of the WD due to the test piece as well as that due to the window 

system in only one cryogenic cooldown. 

 

2. CONCEPT OF MEASUREMENT SCHEME 

 

 To set the stage, definitions and requirements are made as follows.  x  and y  are 

the Cartesian coordinates in a plane perpendicular to the optical axis as determined by the 

interferometer.  An implicit assumption is thus the optical axes of the inteferometer 

reference beam and the return beam from the test piece coincide with each other.  The 

WDs due to the window system and the test piece are denoted as W(x,y) and T (x, y), 

respectively.  For clarity, all WDs mentioned in the following are defined to be 

single-pass, unless stated otherwise.  It is also required by the measurement scheme that  

 

  x domain of W(x,y){ }⊇ x domain of T (x, y){ }± ∆x    (1) 

 

and 

 

  y domain of W(x, y){ }⊇ y domain of T (x,y){ }± ∆y   (2) 

 

where ∆x  (> 0) and ∆y  (> 0) are the intended shifts of the test piece along the two 

transverse axes.  Of course, one may define the domain for T (x, y) through software such 
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that it meets the aforementioned requirements even if it is wider in area than the window.  

Therefore, the only physical requirement for the actual test piece is that there be enough 

clearance around it for lateral shifting. 

 

 The observed WD Z(x,y)  within the domain of T (x, y) is then 

 

  Z(x,y) = W(x, y) + T(x, y)       (3) 

 

by definition.  On the other hand, the WD resulting from shifting the test piece, say, in 

the +x  direction by ∆x  becomes: 

 

  Z⇒(x, y) = W(x, y) + T (x − ∆x, y),     (4) 

 

now within the new domain defined by the shifted test piece.  Therefore, 

Z(x,y) − Z⇒(x, y), within the overlap region between the pre-shift and post-shift test 

piece domains, clearly provides information on the difference in T (x, y)  between two 

positions spaced by ∆x .  In principle, by measuring the WDs before and after shifting the 

test piece, for example, in both +x  and +y  direction, two sets of 1-D WDs due to the test 

piece become available, one set defined over grid segments parallel to the x  axis and the 

other to the y  axis.  Apparently, these 1-D WDs are free of the window effect.  This 

constitutes the basis of the proposed measurement scheme.  The next step, as will be 

discussed later, is "weave" them together and derive the 2-D wavefront distortion 

function (WDF) for the test piece. 
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 As a footnote, Z⇒(x + ∆x, y) − Z (x, y) and Z⇑ (x, y + ∆y) − Z (x, y) together 

certainly provide direct information on W(x,y).  However, because generally the test 

piece is of direct concern, the discussion will focus on deriving T (x, y) instead.  

Nevertheless, W(x,y) may still result as a by-product from W(x,y) = Z(x, y) − T(x, y) . 

 

 To simplify notation, it is further defined that Zi, j ≡ Z i∆x, j∆y( ) with i , j  being 

integers, and likewise for Wi , j , Ti, j , Zi , j
⇒ , Zi , j

⇑ , etc.  In other words, it is chosen to deal 

with WD values only at the Cartesian grid points.  Of course, the concept of grid point is 

an idealization; in measurement, each grid point corresponds to a small neighboring and 

enclosing area over which the signal is averaged to generate the interferometric data to be 

associated with the grid point.  

 

3. SYNTHESES OF 1-D FIGURES 

 

 Before synthesizing the 1-D WDFs, the effective domain of Ti, j  is to be 

determined to facilitate the subsequent synthesis of the 2-D WDF.  This entails two 

further requirements.   

 

The first is that every grid point i∆x, j∆y( ) be an intersection between the two 

corresponding orthogonal grid segments (labeled by j  and i , respectively, for now) with 

each of them containing two or more consecutive such discrete intersections including the 

one of concern.  This requirement eliminates some grid points around the edge(s) of the 
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original domain that is determined by the physical boundary (or boundaries) of the test 

piece, as exemplified in Figure 1.  Consequently, associated with each i∆x, j∆y( ) inside 

the resulting domain, there are two functional values, namely, one from each of the two 

1-D WDFs yet to be individually offset as a whole in z .  This requirement is critical for 

an efficient synthesis of the 2-D WDF.   

 

The first requirement may lead to multiple unconnected domains.  The second 

requirement is thus that the domain of Ti, j  be topologically connected as one piece; only 

a single simply-connected, or multiply-connected, domain is involved at a time.  This is 

consistent with the fact that, in interferometric figure measurements, the absolute phase 

difference between two separate domains is generally ambiguous.  

 

 The first requirement can be met by rastering scans in which one removes from 

the original test piece domain all grid points that have no immediate neighbors in the 

directions orthogonal to that of rastering.  However, it takes three rastering scans, for 

example, first all in the +x  (or −x ) direction, then in the +y  (or −y ) direction, and 

finally in the +x  (or −x ) direction again.  As indicated in Figure 1, the third rastering 

scan is definitely not redundant. 

 

 Suppose, within the domain resulting from the aforementioned "deburring" 

process, there are nx  and ny  1-D WDFs defined over grid segments parallel to the x  axis 

and y  axis, respectively.  For clarity, each grid segment in the newly defined domain is 
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labeled with an integer s  ranging from 1 through nx + ny , and the nx  segments parallel to 

the x  axis are counted consecutively first.   

 

 The 1-D, and thus the 2-D, WDFs are to be synthesized under the assumption that 

the phase-map measurement noises at different grid points i) are uncorrelated and 

random in nature, and ii) share the same random NP.  In other words, the NP per phase-

map measurement per grid point is nominally constant from point to point and from map 

to map.  Because NP is additive, creating a 1-D WDF with a uniform NP distribution 

would mean all points of the 1-D WDF are each a linear combination of the same 

effective number of raw data points obtained from the phase-map measurements.  In here, 

the raw data points involved for each point of the 1-D WDF may not be the same set of 

raw data points.  These statements apply to 2-D WDF as well.   

 

To obtain the 1-D WDFs by integrating the difference data, the following 

conventional approach could be taken.  For example, along a grid segment s  parallel to 

the x  axis,  

 

  Ti, j
s = Zp, j − Zp, j

⇒( )
p= imin (s)+1

i

∑       (5) 

 

where imin  is the minimum integer coordinate along s .  Unfortunately, Eq. (5) shows that 

the number of raw data points involved, i.e., Zp, j  and Zp, j
⇒ , increases linearly with the 
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summation upper limit i ; the NP resulting from integration depends on the integration 

coordinate.  To solve the problem, a different scheme of numerical integration is devised:  

 

  Ti, j
s = 1

2
Sign i − p + 1

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ Zp, j − Zp, j

⇒( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ p= imin (s)+1

imax (s)

∑     (6) 

 

where Sign  is a function reflecting only the sign of its real argument, the value of 1/2 in 

the argument of Sign  may be any number within open interval (0,1), imin  and imax  are the 

minimum and maximum integer coordinate along s .  In a sense, Eq. (6) is the discrete 

version of  

 

  T(x,y) − 1
2

T xmin ,y( )+ T xmax,y( )[ ]= 1
2

Sign x − τ( )∂T τ,y( )
∂τ

dτ
xmin

xmax

∫ , 

 (7) 

 

with its right side corresponding to a bidirectional integration.  Noticeably, the 

corresponding integration constant is ignored in Eq. (6) in that the "dc" component of the 

WD is of no significance for 1-D per se.  Nevertheless, the optimal relative offsets 

among all derived 1-D WDFs will be determined later.  As the foundation for the 

algorithm to be introduced, Eq. (6) features an NP distribution independent of the 

coordinate i  along s because each Ti, j
s  for a specific s is a different linear combination of 

the same group of raw data points with coefficients being either 1 or -1.  As a property, 
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the new numerical integration approach necessarily makes the integration interval, for 

example, [imin (s)∆x,imax (s)∆x] in this case, embrace at least one zero-crossing point.   

 

 Although one may simply shift the test piece in only two directions, for example, 

in +x  and +y  as mentioned previously, the following discussion will focus on the four-

shift measurement, which reflects the symmetry most dewar systems may provide.  In 

other words, the test piece is shifted one at a time in the +x  and −x  direction by ∆x , and 

similarly in the +y  and −y  direction by ∆y = ∆x .  As a result, there are five wavefront 

measurements to deal with.  Two new 1-D WDFs may accordingly be defined as: 

 

  Ti, j
s ⇔ ≡

1
2

Ti, j
s ⇐ + Ti, j

s⇒( )       (8) 

 

  
  
Ti, j

s' ≡
1
2

Ti, j
s'⇓ + Ti, j

s'⇑( )       (9) 

 

where 

 

  Ti, j
s⇒ = 1

2
Sign i − m + 1

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ Zm, j − Zm, j

⇒( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ m= imin (s)+1

imax (s)

∑ ,   (10) 

 

  Ti, j
s⇐ = 1

2
Sign i − n − 1

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ Zn, j

⇐ − Zn, j( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ n= imin (s)

imax (s)−1

∑ ,    (11) 
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  Ti, j
s'⇑ = 1

2
Sign j − p + 1

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ Zi,p − Zi,p

⇑( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ p= jmin (s' )+1

jmax (s' )

∑ ,   (12) 

 

and 

 

  Ti, j
s'⇓ = 1

2
Sign j − q − 1

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ Zi,q

⇓ − Zi,q( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ q= jmin (s' )

jmax (s' )−1

∑ .    (13) 

 

T s ⇔  with 1 ≤ s ≤ nx  and   T
s'  with nx + 1≤ s' ≤ nx + ny  thus represent two sets of 

experimentally derived 1-D WDFs.  To be more specific, there are two values, i.e., Ti, j
s ⇔  

and   Ti, j
s' , associated with each grid point.  

 

4. PRELIMINARY SYNTHESIS OF THE 2-D FIGURE  

 

 For synthesizing the 2-D WDF, one needs to determine the dc-offsets among all 

1-D WDFs.  Because there are two 1-D distortion values at each discrete location, the 

sum of squares of all such differences over the entire domain is to be minimized while 

each dc-independent 1-D distortion figure remains the same.  In that there are still two 

values at every grid point after the minimization, one may then take the arithmetic 

average between the two as the experimentally derived value for the 2-D WDF at every 

grid point.  
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 In the following, the minimization process is presented explicitly partly to provide 

a quick recipe for practical purposes but mainly to set the stage for a predictive noise 

analysis to be discussed in the next section.  The minimization process is equivalent to 

solving the following set of simultaneous linear equations in cs: 

 

  

∂
∂cs

Ti, j
p⇔ + cp( i, j )( )− Ti, j

q + cq( i, j )( )2

i, j
∑ = 0 for 

s =1, ...,  nx + ny

p =1, ...,  nx

q = nx +1, ...,nx + ny

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

(14) 

 

where cp( i, j ) and cq( i, j )  are the two offset variables for the two grid segments p  and q  

that intersect at i∆x, j∆y( ).  It is noted that p  and q  are functions of i∆x, j∆y( ).  From the 

3-D perspective formed by the two sets of 1-D WDFs defined over the two mutually 

orthogonal sets of 1-D domains, it is apparent that Eq. (14) has infinitely many sets of 

solutions.  Certainly, it makes no difference if the whole set of cs 's is offset 

simultaneously by an arbitrary constant.  This is consistent with the fact that the offset for 

the overall WDF is meaningless in terms of making optical-figure measurements.  

Therefore, one cs needs to be fixed as a constant, or simply as zero for convenience.  

(The next section addresses the question of which one to fix.) 

 

 Eq. (14) can be rewritten in matrix form as 

 

  ˆ G C
↓

= F
↓

        (15) 
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where ˆ G  is a symmetric matrix, and C
↓

 and F
↓

 are column vectors.  C
↓

 consists of all 

nx + ny  of cs 's as variables to be determined.  Again, the offsets for the grid segments 

parallel to the x  axis are arranged to be the first nx  elements in C
↓

.  Accordingly, ˆ G  

becomes an (nx + ny) × (nx + ny ) symmetric matrix characteristic of the geometry of the 

domain perimeter only.  The elements of ˆ G  are described as follows.  One first 

establishes, for the upper-right corner of ˆ G , an nx × ny  sub-matrix ˆ G ' with its elements 

ga ,b
'  either equal to one if the grid segment a  and the segment nx + b  have an 

intersection, or equal to zero otherwise.  Here, a  ranges from 1 through nx  and b  from 1 

through ny .  One then sets the rest of the off-diagonal elements in the upper-right half of 

ˆ G  to zeros.  The diagonal elements of ˆ G  are: 

 

gs,s =

− g's,p as 1 ≤ s ≤ nx
p=1

ny

∑

− g'p,s−nx
as nx +1 ≤ s ≤ nx + ny

p=1

nx

∑

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

.    (16) 

 

Noticeably, it is as a result of the first domain requirement described in Section 3 that the 

sub-matrix ˆ G ' contains all the information needed to generate ˆ G .  Based on Eqs. (8)-

(13), the elements of F
↓

 are  
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fs =

Tp, j( p,s)
s⇔ − Tp, j( p,s)

s'( p, j )[ ] as 1≤ s ≤ nx                 
p= imin (s)

imax (s)

∑

Ti(s,p ),p
s − Ti(s,p ),p

s'(i,p )⇔[ ] as nx +1≤ s ≤ nx + ny
p= jmin (s)

jmax (s)

∑

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

.  (17) 

 

It is confirmed from the right side of Eq. (17) that the subscript s on the left completely 

determines the value of fs .  

 

 To guarantee uniqueness in solution when the test piece domain is a single piece, 

the following set of simultaneous linear equations (in elements of the column vector Ck↓
) 

can be solved instead  

 

  ˆ G k Ck↓
= Fk↓

        (18) 

 

where ˆ G k  is the square matrix reduced from ˆ G  by deleting the k th column and the k th 

row, and Ck↓
 and Fk↓

 are column vectors reduced from C
↓

 and F
↓

, respectively, by 

deleting their k th element.  This is equivalent to implicitly setting ck  equal to zero or 

referencing all the other optimized offsets to the grid segment k as an “anchor.”  One may 

recall the zero-crossing property resulting from the bidirectional integration described in 

Section 3.  Of course, trying to solve Eq. (18) also constitutes a test to see if the test piece 

domain is topologically connected.  If it includes two or more pieces, then Eq. (18) would 

have no unique solution, or would result in no solution in numerical calculation.  
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5. SYNTHESIS OPTIMIZATION 

 

 The question of which ck  should be set to zero is essentially a noise issue.  

Resulting from the devised 1-D integration method, each 1-D WDF has a constant level 

of NP within its 1-D domain.  However, the constant NP is proportional to the number of 

discrete points over that 1-D domain.  Consequently, dependent on the overall 2-D 

domain geometry, the 2-D WDF resulting from Eq. (18) has generally a non-uniform NP 

distribution, whichever ck  has been set to zero.  

 

 For illustration only, provided here is a relative simple scenario (see Figure 2) in 

which a circular test piece covers eleven equally-spaced discrete points along both x  and 

y  axis, with ∆x = ∆y .  The distribution of integrated NP can be derived as follows in unit 

of the average NP per grid-point per phase-map-measurement.  Naturally, the 

experimentally-derived 2-D distortion for point i∆x, j∆y( ) may be defined as  

 

  
  
Ti, j ≡ 1

2
Ti, j

a⇔ + ca + Ti, j
b + cb[ ].      (19) 

 

In view of Eqs. (8)-(13), and the solution of Eq. (18), each Ti, j  is thus a linear 

combination of Zi', j ' , Zi', j '
⇒ , Zi', j '

⇐ , Zi', j '
⇑ , and Zi', j '

⇓  (to be collectively abbreviated as Zi', j '
all s) 

with all pertinent i'  and j'.  Assume the average NPs associated with Zi', j '
all s are all equal 

and independent of a) i'  and j', and b) which phase-map measurement made as indicated 

by the superscripts “null,” ⇒, ⇑, etc.  Then, for each grid point, the sum of all 
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coefficient-absolute-values of this linear combination becomes the estimated location-

specific integrated NP.  In other words, the integrated NP can be expressed in a unit such 

that its value is equivalent to the effective number of single phase-map measurements.  

Figure 2 shows two such derived distributions with each of them based on a different 

selection of the anchor-segment, as indicated by a pair of embracing arrows.  Apparently, 

each distribution features a valley along the selected anchor-segment.  Interestingly, such 

anchor-segment-specific NP distributions reflects a) a convex effect along the valley, and 

b) generally concave effects elsewhere. 

 

 A question to be addressed is how to minimize such non-uniformity as well as the 

maximum in integrated NP distribution, while essentially maintaining the same WD 

content of Ti, j  as would be obtained from a single phase-map measurement as if a single 

phase-map measurement were adequate to obtain Ti, j ?  A straightforward approach is 

average over all nx + ny  anchor-segment-specific 2-D WDFs.  The associated NP 

distribution can be calculated as follows.  For each grid point i∆x, j∆y( ), expand Ti, j  as a 

linear combination in Zi', j '
all ’s, as previously described.  Then take the arithmetic average 

over all nx + ny  such anchor-segment-specific linear combinations for each discrete 

location.  And finally sum over all the coefficient-absolute-values in the resultant 

expansion for each grid point to form the 2-D NP distribution.  As a reminder, the 

estimation process is not the same as arithmetic-averaging over the nx + ny  2-D NP 

distributions; the process is based on arithmetic-averaging over the nx + ny  anchor-

segment-specific 2-D WDFs to begin with.  Figure 3 shows such an NP distribution 

obtained for the same example case as for Figure 2.  As expected, this averaging process 
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not only decreases the maximum and peak-to-valley value, but also erases the convex 

valley-like feature; generally speaking, it creates a concave distribution, or an edge-

thickening effect.  As a reference, Table 1 summarizes the resultant maximum and 

minimum NPs for circular test pieces with several low densities of grid points.  For 

instance, Table 1 shows that if there are fifteen data points across the diameter along the 

x  and the y  axis, then, to decrease the maximum NP level of the synthesized 2-D WDF 

to less than the average noise level of a single phase-map measurement, one would need 

to signal average at least twelve phase maps for each of the five test-piece locations.  

 

 For simplicity in description, we name “each of the nx + ny  anchor-segment-

specific optimizations” Process a (with a for anchor), “each complete set of nx + ny  

Process a’s” Process A, and “arithmetic-averaging over all nx + ny  anchor-segment-

specific optimizations from Process A” Process G.  In other words, Process A generates 

nx + ny  2-D WDFs, which together may generate a single 2-D WDF through Process G.  

Now two counteracting effects have been observed in terms of curvature in NP 

distribution (not in WD).  One is the convex effect along the anchor-segment from each 

Process a; the other is the global concave effect from Process G.  These observations 

together suggest a potentially better optimization approach to further minimize the non-

uniformity in integrated NP distribution.  For example, from each initial Process a, one 

may a) single out the 1-D WDF along the selected anchor-segment from the resultant 2-D 

WDF, and then b) use all such 1-D WDFs as a set of inputs for another round of Process 

A.  Hopefully, the second round of Process A may generate a new set of 1-D WDFs at the 

selected anchor-segments with even more convexities in NP distribution.  In other words, 
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Process A may be iterated this way as many times as preferred.  Such convexities 

resulting from each process A would then be ready for compensation by Process G.  So to 

speak, after each Process A, Process G may serve as a check to see the effect on global 

non-uniformity in integrated NP distribution.  In other words, one may set a minimization 

criterion for ending the entire iteration.  A 2-D WDF may thus result free of any artifact 

valley and associated with a smaller non-uniformity in the integrated NP distribution.   

 

 The aforementioned iteration, however tedious it might seem, is perhaps needed 

only once for a) a given test-piece domain shape, and b) a given set of Cartesian grid 

points within, for us to explore the convergence behavior of the non-uniformity in 

integrated NP distribution.  All the iteration generates is, on the one hand, for each grid 

point, an expression of Ti, j , namely, an optimized linear combination of Zi', j '
all s, and, on the 

other hand, the associated NP distribution.  A database for such linear-combination 

coefficients may certainly be created prior to measurement to determine the number of 

phase-map measurements to meet certain tolerance criteria on i) integrated NP non-

uniformity, and ii) maximum NP.  

 

 As an important footnote, the finite shift steps, i.e., ∆x  and ∆y , used in the 

proposed measurement scheme may lead to more useful data than have so far been 

discussed.  Suppose, in terms of measurement, each grid point between orthogonal 

coordinate grid segments corresponds to a spot of a small finite area, say, approximately 

δxδy  where δx  and δy  are the area’s approximate widths along the x  and y  direction, 

respectively.  Because of the continuity nature of phase maps, the four-shift measurement 



 21

scheme, for instance, may lead to approximately as many as 4 ∆x /δx( ) ∆y /δy( ) 2-D 

WDFs, which are overlapping and thus partially redundant and partially complementary.  

However, the question of how to make use of all such information is beyond the scope of 

the article, and will be addressed separately in the future. 

 

6 REMARKS ON TESTING & IMPLIMENTATION 

 

One would typically deal with data-point densities of approximately thirty points 

across the test-piece diameter in measuring the corresponding low-order Zernike 

components of the figure.  “For definition of Zernike components, see Reference 3.”  In 

this case to achieve an average noise level less than that of a single phase-map 

measurement, one would, as extrapolating from Table 1, expect to signal-average over 

approximately twenty phase maps for each of the five laterally offset locations of the test 

piece.  The optical and mechanical stability that would be required over the time needed 

for completing all five signal-averagings were demonstrated under cryogenic conditions 

according to Reference 2; the WD and associated noise level resulting from a single 

phase-map measurement did not noticeably vary over twenty hours, i.e., a time scale 

orders-of-magnitude exceeding the requirement of concern. 

 

 In case an unusually high density of data points is required, one could 

alternatively take an incremental approach in shifting the test piece.  For example, start 

with a relatively large shift step to ensure a low noise level resulting from the 2-D figure 

synthesis.  Then repeat the same scheme with a shift step, say, half of the initial one.  In 
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other words, it is first established a low-density and thus low-noise figure framework, 

which also subdivides the figure into smaller regions.  Because one may synthesize these 

smaller regions individually in a similar manner with a smaller shift step, the remaining 

question is simply: how to concatenate them together appropriately?  It is a question that 

can certainly be addressed through a variety of software approaches.  

 

 The verification through hardware may comprise two parts as follows: (1) 

verification of the data-reduction software by conducting room-temperature 

measurements, and (2) end-to-end verification using cryogenic setups.  For room-

temperature verification, one can use two different experimental configurations, which 

may be denoted as F/W/T and F/T where F, W, and T represent Fizeau interferometer 

mainframe, window system, and test piece, respectively, following the order of physical 

arrangement.  Of course, the test piece in the two configurations has to be the same such 

that one may compare the test-piece figures obtained from the two experimental 

configurations.  Similarly, for the cryogenic end-to-end verification one may use two 

other configurations, which can be denoted as F/W/T1 and F/W/T2 where T1 and T2 

represent two circular test pieces of the same diameter.  Basically, T1 and T2 are mounted, 

inside the cryogenic dewar, on the same X -Y  stage supported by a rotation stage, by 

which their locations can be interchanged.  In this case, if W covers both T1 and T2, one 

may compare the window transmission figures before and after the interchange to verify 

the scheme.  Similarly, one may also compare the figures of T1 (or T2) before and after 

the interchange.  The results of such testing and implementation through hardware will be 

presented in a separate future article. 
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7 CONCLUDING REMARKS 

 

It is proposed that the catch-22 loop in simultaneously measuring individual 

wavefront distortions of two in-series optical elements can be resolved by a simple 

approach, namely, additionally measuring the net wavefront distortions each resulting 

from the two elements offset in one of the four Cartesian directions perpendicular to the 

optical axis.  The type of interferometry employed is unlimited to Fizeau, which however 

is typical and perhaps most convenient in a cryogenic measurement scenario as given in 

the article.  For minimizing non-uniformity in integrated uncorrelated random-noise 

power in the resulting wavefront distortions, the proposed non-Newtonian numerical 

integration scheme is specific of the effective test-piece domain shape.  Such numerical 

integration scheme for combining the net wavefront distortion data may be determined 

algorithmically prior to measurement according to criteria on noise-level tolerance; its 

determination thus poses no concern about computer speed in the corresponding real-time 

wavefront synthesis.  The domain-shape-specific integration scheme per se represents a 

new and general numerical concept for integrating noise-carrying experimental data.  Its 

generalization for higher dimensional data sets is conceivably feasible.  
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TABLE(S) 

 

Table 1  Resulting from one iteration of Process A and then Process G (both defined in 

Section 5), the maximum and minimum noise powers for circular test pieces with several 

low densities of discrete points arranged in the Cartesian manner.  The noise powers are 

in unit of the average noise power per phase-map measurement per discrete point, under 

the assumption the phase-map measurement noises at different discrete points i) are 

uncorrelated and random in nature, and ii) share the same random noise power.  So to 

speak, the noise power per phase-map measurement per discrete point is a constant from 

point to point. 

 

Number of discrete points 

across the diameter along 

the x , or y , axis  

5 7 9 11 13 15 

Maximum noise power 2.8 4.9 6.5 8.6 10.2 11.8 

Minimum noise power 2.7 4.2 5.4 7.0 8.2 9.3 
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LIST OF FIGURE CAPTIONS 

 

Figure 1  An illustration of the domain-defining process.  Discrete locations represented 

by characters other than "− " are within the boundary of the effective pre-shift test piece.  

Locations represented by "− " are outside the boundary.  Suppose we conduct rastering 

elimination first in the +x  direction from top to bottom, then in the −y  direction from 

left to right, and finally in the +x  direction again from top down.  Character D 's indicate 

the resulting domain to be used in the reduction scheme.  Other characters represent 

locations eliminated in different steps.  For example, X3 refers to a point eliminated in 

the third rastering elimination, which is in the +x  direction. 

 

Figure 2  Two noise-power distributions, (a) and (b), resulting from different anchor-

segment selections in Process a, as defined in Section 5.  In this particular example, we 

consider a circular test piece, whose boundary encloses all discrete points labeled by 

either a number representing the calculated noise power or a character " E ".  The noise 

powers are in unit of the average noise power per phase-map measurement per discrete 

point, under the assumption the phase-map measurement noises at different discrete 

points i) are uncorrelated and random in nature, and ii) share the same random noise 

power.  So to speak, the noise power per phase-map measurement per discrete point is a 

constant from point to point.  " E " denotes a point eliminated in the domain-defining 

process.  Arrows indicate the anchor-segment locations used in Process a. 
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Figure 3  An illustration of the noise-power distribution from one round of Process G, as 

defined in Section 5.  (Refer to the caption of Figure 2 for notations and assumptions.) 
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FIGURE 1 

(For Editor’s information, Figures 1, 2(a), 2(b), and 3 are generated using the Microsoft 

Equation Editor in WORD; they are not normal line art.  Therefore, they are not put in 

the TIFF or other suggested formats; they are attached as part of the text for optimal 

resolution and scalability.) 

 

− − Y2 − Y2 − − − − Y2 − −
− X1 Y2 − D D − − X3 X3 X3 −
− − D D D D D − Y2 − Y2 −
X1 X1 D D D D D D D X1 Y2 −
− − − D D D D D D − − −
− − − D D − D D − − − −
− − − − D D D D − − − −
− − − − D D − D D − − −
− − − − Y2 − Y2 − D D − −
− − − − Y2 X1 Y2 − D D D −
− − − − − − − − − D D −
− − − − − − − − − − − −

 

 



 30

FIGURE 2(a) 

 

− − − − − − ↓ − − − − − −
− − − − − − E − − − − − −
− − − 10. 9.3 8.5 6.0 8.5 9.3 10. − − −
− − 11. 9.9 9.1 8.3 7.0 8.3 9.1 9.9 11. − −
− − 10. 9.4 8.6 7.9 7.0 7.9 8.6 9.4 10. − −
− − 10. 9.1 8.3 7.6 7.0 7.6 8.3 9.1 10. − −
− E 10. 9.1 8.3 7.6 7.0 7.6 8.3 9.1 10. E −
− − 10. 9.1 8.3 7.6 7.0 7.6 8.3 9.1 10. − −
− − 10. 9.4 8.6 7.9 7.0 7.9 8.6 9.4 10. − −
− − 11. 9.9 9.1 8.3 7.0 8.3 9.1 9.9 11. − −
− − − 10. 9.3 8.5 6.0 8.5 9.3 10. − − −
− − − − − − E − − − − − −
− − − − − − ↑ − − − − − −

 

(a) 
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FIGURE 2(b) 

 

− − − − − − − − − − − − −
− − − − − − E − − − − − −
− − ↓ 11. 11. 11. 11. 12. 13. 13. − − −
− − 6.9 9.5 9.6 9.9 10. 11. 12. 12. 13. − −
− − 7.4 8.9 9.0 9.3 9.7 10. 11. 12. 12. − −
− − 7.4 8.5 8.7 9.0 9.4 9.9 11. 11. 12. − −
− E 7.4 8.4 8.6 8.9 9.3 9.8 11. 11. 12. E −
− − 7.4 8.5 8.7 9.0 9.4 9.9 11. 11. 12. − −
− − 7.4 8.9 9.0 9.3 9.7 10. 11. 12. 12. − −
− − 6.9 9.5 9.6 9.9 10. 11. 12. 12. 13. − −
− − ↑ 11. 11. 11. 11. 12. 12. 13. − − −
− − − − − − E − − − − − −
− − − − − − − − − − − − −

 

(b) 
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FIGURE 3 

 

− − − − − − − − − − − − −
− − − − − − E − − − − − −
− − − 8.6 8.3 8.2 8.1 8.2 8.3 8.6 − − −
− − 8.6 8.0 7.7 7.6 7.5 7.6 7.7 8.0 8.6 − −
− − 8.3 7.7 7.4 7.3 7.2 7.3 7.4 7.7 8.3 − −
− − 8.2 7.6 7.3 7.1 7.1 7.1 7.3 7.6 8.2 − −
− E 8.1 7.5 7.2 7.1 7.0 7.1 7.2 7.5 8.1 E −
− − 8.2 7.6 7.3 7.1 7.1 7.1 7.3 7.6 8.2 − −
− − 8.3 7.7 7.4 7.3 7.2 7.3 7.4 7.7 8.3 − −
− − 8.6 8.0 7.7 7.6 7.5 7.6 7.7 8.0 8.6 − −
− − − 8.6 8.3 8.2 8.1 8.2 8.3 8.6 − − −
− − − − − − E − − − − − −
− − − − − − − − − − − − −

 

 

 




