INVESTIGATION OF EPISODIC FLOW EVENTS FROM UNSATURATED SAND MEDIA INTO MACROPORES

PDF Version Also Available for Download.

Description

Episodic or intermittent flow, under constant influx conditions, has been observed under a number of scenarios in unsaturated flow systems. Flow systems characterized by a porous media underlain by a macropore, as well as discrete fracture networks, have been cited in recent literature as examples of systems that can exhibit episodic outflow behavior. Episodic outflow events are significant because relatively large volumes of water can move rapidly through an unsaturated system, carrying water and possibly contaminants to depth greatly ahead of a diffusive wetting front. In this study, we examine the modeled behavior of water flow through a sand column ... continued below

Creation Information

Podgorney, Robert K. May 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Episodic or intermittent flow, under constant influx conditions, has been observed under a number of scenarios in unsaturated flow systems. Flow systems characterized by a porous media underlain by a macropore, as well as discrete fracture networks, have been cited in recent literature as examples of systems that can exhibit episodic outflow behavior. Episodic outflow events are significant because relatively large volumes of water can move rapidly through an unsaturated system, carrying water and possibly contaminants to depth greatly ahead of a diffusive wetting front. In this study, we examine the modeled behavior of water flow through a sand column underlain by a vertical capillary tube in order to assess to potential for rapid vertical water movement, and compare the results to conventional modeling approaches and with experimental data from the literature. Capillary pressure relationships were developed for the macropore domain that capture the complex interrelationships between the porous materials above and control the flow out of the system. Modeling results using the new relative permeability and capillary pressure functions capture the behavior observed in laboratory experiments remarkably well, while simulations using conventional relative permeability and capillary pressure functions fail to capture some of the observed flow dynamics.

Source

  • TOUGH2,Berkeley, Ca,05/15/2006,05/17/2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-06-11172
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911649
  • Archival Resource Key: ark:/67531/metadc888984

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 6:11 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Podgorney, Robert K. INVESTIGATION OF EPISODIC FLOW EVENTS FROM UNSATURATED SAND MEDIA INTO MACROPORES, article, May 1, 2006; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc888984/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.