Using Biofuel Tracers to Study Alternative Combustion Regimes

PDF Version Also Available for Download.

Description

Interest in the use of alternative fuels and combustion regimes is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO{sub 2} emissions are countered with higher nitrogen oxides (NOx) and particulate matter (PM) emissions, and higher noise. Noise and PM have traditionally been the obstacles toward consumer acceptance of Diesel passenger cars in North America, while NOx (a key component in photochemical smog) has been more of an engineering challenge. Diesels are lean burning ... continued below

Physical Description

14 p. (0.2 MB)

Creation Information

Mack, J H; Flowers, D L; Buchholz, B A & Dibble, R W February 14, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Interest in the use of alternative fuels and combustion regimes is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO{sub 2} emissions are countered with higher nitrogen oxides (NOx) and particulate matter (PM) emissions, and higher noise. Noise and PM have traditionally been the obstacles toward consumer acceptance of Diesel passenger cars in North America, while NOx (a key component in photochemical smog) has been more of an engineering challenge. Diesels are lean burning (combustion with excess oxygen) and reducing NOx to N2 in an oxygen rich environment is difficult. Adding oxygenated compounds to the fuel helps reduce PM emissions, but relying on fuel alone to reduce PM is unrealistic. Keeping peak combustion temperature below 1700 K prevents NOx formation. Altering the combustion regime to burn at temperatures below the NOx threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous Charge Compression Ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NOx and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to validate combustion modeling.

Physical Description

14 p. (0.2 MB)

Notes

PDF-file: 14 pages; size: 0.2 Mbytes

Source

  • Journal Name: Nuclear Instruments and Methods B, vol. 259, N/A, June 1, 2007, pp. 414-420; Journal Volume: 259

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-218979
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 908134
  • Archival Resource Key: ark:/67531/metadc888945

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 14, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 13, 2017, 5:56 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mack, J H; Flowers, D L; Buchholz, B A & Dibble, R W. Using Biofuel Tracers to Study Alternative Combustion Regimes, article, February 14, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc888945/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.