SHOCK INITIATION EXPERIMENTS ON THE HMX BASED EXPLOSIVE LX-10 WITH ASSOCIATED IGNITION AND GROWTH MODELING

Kevin S. Vandersall, Craig M. Tarver, Frank Garcia, Paul A. Urtiew, Steven K. Chidester

June 18, 2007

14th American Physical Society Topical Conference on Shock Compression of Condensed Matter
Kohala Coast, HI, United States
June 24, 2007 through June 29, 2007
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
SHOCK INITIATION EXPERIMENTS ON THE HMX BASED EXPLOSIVE LX-10 WITH ASSOCIATED IGNITION AND GROWTH MODELING

Kevin S. Vandersall, Craig M. Tarver, Frank Garcia, Paul A. Urtiew, and Steven K. Chidester

Energetic Materials Center
Lawrence Livermore National Laboratory
Livermore, CA 94550

Abstract. Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of the binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.

Keywords: Explosive, HMX, LX-10, shock to detonation transition, ignition and growth
PACS: 82.33.Vx, 82.40.Fp

INTRODUCTION

The shock initiation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) explosives has a wide interest due to general safety concerns. Prior experiments on LX-10 (95% HMX, 5% Viton by weight) have been performed [1,2], but the pressure regime of these experiments was limited and questions existed on the extrapolation to lower pressures. Other HMX explosives have also been studied [3] including some common explosives such as PBX 9501 [4,5] and LX-04 [6,7] using wedge tests, electromagnetic velocity gauges, manganin gauges at ambient and elevated temperatures. In this work, the shock sensitivity of LX-10 was measured using in-situ pressure gauges and modeled using Ignition and Growth.

EXPERIMENTAL PROCEDURE

Shock initiation experiments were performed on the explosive HMX based explosive LX-10 using the 101 mm diameter propellant driven gas gun at Lawrence Livermore National Laboratory (LLNL). Figure 1 shows a description of a typical experiment. The projectile consisted of a polycarbonate sabot with a 6061-T6 Aluminum flyer plate on the impact surface. As seen in Figure 1, the target
includes buffer plates in contact with the high explosive at both the front and rear of the assembly to hold the material in place and sandwich the nichrome heater foils. The explosive was in the form of thin disks (with starting density approximately 1.82 g/cm³) with gauge packages inserted in between with the total explosive thickness being 20 mm. The manganin piezoresistive foil pressure gauges placed within the explosive sample were “armored” with sheets of Teflon insulation on each side of the gauge. Manganin is a copper-manganese alloy that changes electrical resistance with pressure (i.e. piezoresistive). Also used were PZT Crystal pins to measure the projectile velocity and tilt (planarity of impact). During the experiment, oscilloscopes measure change of voltage as result of resistance change during the experiment. The reaction rate equation is:

\[p = A e^{-B_1 V} + Be^{-B_2 V} + \omega C_V T / V \]

where \(p \) is pressure in Megabars, \(V \) is relative volume, \(\omega \) is the Gruneisen coefficient, \(C_V \) is the average heat capacity, and \(A, B, R_1 \) and \(R_2 \) are constants. The equations of state are fitted to the available shock Hugoniot data. Table 1 contains the modeling parameters and reaction rate constants for these experiments. The reaction rate equation is:

\[
\frac{dF}{dt} = I(1 - F)^y \left(\frac{\rho / \rho_0 - 1 - a}{\rho_0 \lambda_{max}} \right) + \frac{G_1 (1 - F^y) F^z p^x}{\lambda_{max} < F < 1} + \frac{G_2 (1 - F^y) F^z p^x}{\lambda_{max} < F < 1}
\]

Table 1. Ignition and Growth modeling parameters.

<table>
<thead>
<tr>
<th>MATERIAL PARAMETERS</th>
<th>(\rho_0 = 1.862 \text{ g/cm}^3)</th>
<th>(T_0 = 298^\circ \text{K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Modulus</td>
<td>0.05 Mbar</td>
<td>Yield Strength=0.002 Mbar</td>
</tr>
<tr>
<td>(\rho_0)</td>
<td>1.862 \text{ g/cm}^3</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Gruneisen parameters for inert materials.

<table>
<thead>
<tr>
<th>INERT</th>
<th>(\rho_0) (g/cc)</th>
<th>C (km/s)</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(\gamma_0)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6061- T6 Al</td>
<td>2.703</td>
<td>5.24</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.97</td>
<td>0.48</td>
</tr>
<tr>
<td>Teflon</td>
<td>2.15</td>
<td>1.68</td>
<td>1.123</td>
<td>3.98</td>
<td>-5.8</td>
<td>0.59</td>
<td>0.0</td>
</tr>
</tbody>
</table>
where F is the fraction reacted, t is time in µs, ρ is the current density in g/cm³, ρ₀ is the initial density (calculated based on thermal expansion data), p is pressure in Mbars, and I, G₁, G₂, a, b, c, d, e, g, x, y, and z are constants. This reaction rate law models the three stages of reaction generally observed during shock initiation of solid explosives. Table 2 details the Gruneisen parameters used.

RESULTS/DISCUSSION

Table 3 contains the experimental flyer velocities, impact pressures, and run distances to detonation for the experiments.

<table>
<thead>
<tr>
<th>SHOT</th>
<th>IMPACT VELOCITY</th>
<th>INPUT PRESSURE</th>
<th>RUN TO DET</th>
</tr>
</thead>
<tbody>
<tr>
<td>4714</td>
<td>0.732 km/s</td>
<td>2.1 GPa</td>
<td>>29 mm</td>
</tr>
<tr>
<td>4715</td>
<td>0.981 km/s</td>
<td>3.1 GPa</td>
<td>14.4 mm</td>
</tr>
<tr>
<td>4717</td>
<td>0.625 km/s</td>
<td>1.7 GPa</td>
<td>>40 mm</td>
</tr>
<tr>
<td>4723</td>
<td>1.238 km/s</td>
<td>7.0 GPa</td>
<td>2.7 mm</td>
</tr>
<tr>
<td>4725</td>
<td>0.950 km/s</td>
<td>4.8 GPa</td>
<td>6.7 mm</td>
</tr>
<tr>
<td>4726</td>
<td>0.943 km/s</td>
<td>2.9 GPa</td>
<td>20.5 mm</td>
</tr>
<tr>
<td>4727</td>
<td>0.733 km/s</td>
<td>2.1 GPa</td>
<td>30.8 mm</td>
</tr>
</tbody>
</table>

The resulting data points are plotted on the Pop-plot as shown in Figure 2. The in-situ gauge records are shown compared with the modeling results in Figures 3-5 that span a range of run distances to detonation. An increase in pressure can be observed as the shock progresses through and reacts the explosive material until a full detonation is observed. From comparing these records a somewhat reasonable agreement can be seen with room for improvement in the fit. The wave arrival times for the model arrive earlier than the data, especially for the lower pressures.
FIGURE 5. Experimental and calculated pressure histories for experiment 4714.

SUMMARY

Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) was performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. The modeling fits showed somewhat reasonable agreement to the experimental data with room for improvement. Future work is needed to adjust the model to obtain a better fit to the data.

ACKNOWLEDGEMENTS

Special thanks go to the 101 mm gun crew in the High Explosives Application Facility (HEAF) including Rich Villafana, Steve Kenitzer, and Bradley Wong. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

REFERENCES