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Abstract: 

Most research on the agricultural impacts of climate change has focused on the 

major annual crops, yet perennial cropping systems are less adaptable and thus 

potentially more susceptible to damage. Improved assessments of yield responses to 

future climate are needed to prioritize adaptation strategies in the many regions where 

perennial crops are economically and culturally important. These impact assessments, in 

turn, must rely on climate and crop models that contain often poorly defined 

uncertainties. We evaluated the impact of climate change on six major perennial crops in 

California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs 

from multiple climate models were used to evaluate climate uncertainty, while multiple 

statistical crop models, derived by resampling historical databases, were used to address 

crop response uncertainties. We find that, despite these uncertainties, climate change in 

California is very likely to put downward pressure on yields of almonds, walnuts, 

avocados, and table grapes by 2050. Without CO2 fertilization or adaptation measures, 

projected losses range from 0 to >40% depending on the crop and the trajectory of 

climate change. Climate change uncertainty generally had a larger impact on projections 

than crop model uncertainty, although the latter was substantial for several crops. 

Opportunities for expansion into cooler regions are identified, but this adaptation would 

require substantial investments and may be limited by non-climatic constraints. Given the 

long time scales for growth and production of orchards and vineyards (~30 years), 

climate change should be an important factor in selecting perennial varieties and deciding 

whether and where perennials should be planted.  
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1. Introduction 

Climate change resulting from human activity has the potential to substantially 

alter agricultural systems (Adams et al., 1990; IPCC, 2001b; Parry et al., 2004; 

Rosenzweig and Parry, 1994). Many studies have emphasized the potential for adaptation 

to reduce costs or increase gains associated with climate change, suggesting that systems 

that are slow to adapt are more vulnerable (Burton and Lim, 2005; Rosenzweig and 

Hillel, 1998). Yet despite the perceived importance of agricultural adaptation, very little 

research has focused on impacts in perennial cropping systems, which include long-lived 

crops and therefore change much more slowly than annual systems.  

In California, perennial crops represent a multi-billion dollar industry. The fruit, 

nut, and berry harvest of 2003 was worth $7.8 billion in farm receipts alone (California 

Agricultural Statistics Service, 2004), with additional value from manufacturing, tourism, 

and other related activities likely several times that amount. Models of climate change in 

California unanimously project warming over the next century, with mixed predictions of 

precipitation changes (Hayhoe et al., 2004; Snyder et al., 2002). To evaluate the potential 

impact of these climate changes for perennial crop production, we consider here the six 

most valuable California perennial food crops: wine grapes, almonds, table grapes, 

oranges, walnuts, and avocados (Table 1). Each of these crops is typically planted only 

once every 25 or more years. Therefore, adoption of new varieties – a commonly cited 

option for climate change adaptation – occurs much more slowly than for annual crops. 

Assessments of climate change impacts must consider uncertainties both in future 

climate and in the response of crops to climate changes. Climate change uncertainties are 

often evaluated by utilizing projections from multiple climate models, which can each be 
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run with multiple emission scenarios (IPCC, 2001a). Because the probabilities of 

individual model-emission combinations are generally unspecified, the value of multiple 

climate model outputs is mainly to define the range of potential outcomes. Model inter-

comparisons, however, often cite the percent of models with a certain outcome as a 

measure of uncertainty, which implicitly assigns equal probability to each model (IPCC, 

2001a). 

Uncertainties in crop response to climate are often less thoroughly evaluated than 

climate uncertainty in regional and global assessments. For example, in major global 

assessments (Fischer et al., 2005; Parry et al., 2005) crop responses are simulated using 

process-based models that are calibrated for individual sites and then implicitly assumed 

to be perfectly accurate. Mearns et al. (1999) evaluated impacts of climate change on 

corn and wheat yields in the central Great Plains using two crop models (CERES and 

EPIC), and found significant differences between crop models that were comparable to 

differences obtained when varying climate model resolutions. Aggarwal and Mall (2002) 

compared the ORYZAIN and CERES rice models in India, and found differences that 

were nearly as large those due to an optimistic vs. pessimistic climate change scenario. 

Thus, crop model uncertainty appears an important source of overall yield uncertainty 

that should be explicitly treated in impact assessments. 

In this study, we evaluated the responses of California perennial yields to climate 

change, with explicit consideration of both climate and crop model uncertainties. Given 

the lack of data on effects of elevated CO2 on perennial species, the impacts of changes in 

temperature and precipitation alone are modeled. We focus here primarily on the impacts 

at the state level, but include estimates of yield changes for individual counties. The 
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results of this study are not intended as predictions of what will happen, but rather as a 

scientific basis for identifying and prioritizing adaptation needs for the many crops and 

regions within California.   

 

2. Methods 

2.1 Crop Models 

The response of yields to temperature and precipitation changes was described for 

each crop using statistical models developed from 1980-2003 records of state-wide yield 

and monthly average temperatures (minimum and maximum) and rainfall variations 

(Lobell et al., 2006). The use of statistical models was necessitated by a lack of reliable 

process-based models for the crops considered in this study. One advantage of statistical 

models is that they intrinsically account for a wide variety of mechanisms that can 

influence yields in a changing climate. These include not only plant physiological 

processes but also factors like climate-related influences of pests, pathogens, and air 

pollution that are omitted from most process-based models. Another advantage is that 

uncertainties are readily estimated with statistical models, for example using resampling 

techniques, whereas uncertainties in process-based models are often difficult to measure 

(see Introduction).  

Figure 1 shows the historical relationship between yield and the monthly 

temperature variable that explains the highest proportion of yield variance. In general, 

each crop model contained 2-4 temperature or precipitation variables. (See Lobell et al., 

2006 for details). All of the crops except almonds have an optimum temperature above 

and below which yields decline. Interestingly, these optimal temperatures are roughly 
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equivalent to the average values from 1980-2003, illustrating that the current varieties are 

well suited to the current California climate.  

Figure 1 also provides a clear example of the imperfect empirical relationship 

between monthly climate and yields, and thus the uncertainty associated with yield 

projections based on climate. Two aspects of crop model uncertainty were considered 

here: the uncertainty due to the fact that empirical models are based on finite historical 

observations, and do not perfectly describe historical yield-climate relationships (referred 

to as sampling uncertainty), and the added uncertainty due to the fact that simulated 

future monthly temperature and rainfall may exceed the extremes of the historical record 

used to generate the empirical models (referred to as extrapolation uncertainty). Sampling 

uncertainty was estimated using bootstrap resampling of the historical record to generate 

new estimates of the model coefficients (Efron and Gong, 1983), and then applying these 

models repeatedly to the simulated climate. A total of 100 bootstrap replicates were used. 

Extrapolation uncertainty was evaluated by applying the crop models with and without 

allowing simulated yields to exceed historical extremes. The latter approach reflects a 

very conservative assumption that extreme temperatures or rainfalls do not affect yields 

beyond what has been observed.  

Other aspects of crop model uncertainty were not considered here. For example, 

changes in variables not included in the model are implicitly assumed to not affect future 

yields. These include extreme temperature our rainfall events, as well as months other 

than the few selected for each crop based on historical analyses (Lobell et al. 2006). To 

the extent that changes in omitted variables are uncorrelated with model variables, their 

effects introduce an additional source of uncertainty into model projections. 
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2.2 Climate Models 

Outputs of 22 coupled ocean-atmosphere general circulation models are archived 

by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at Lawrence 

Livermore National Laboratory (http://www-pcmdi.llnl.gov; Table 2). Three scenarios of 

emissions trajectories are available for future climate (defined as 2001-2099): the A2 

(medium-high), A1b (medium), and B1 (low) emissions scenarios from the IPCC Special 

Report on Emission Scenarios (SRES) (Nakicenovic et al., 2000). Temperature change 

projections for California in these models range from ~1-3 ºC for 2050 and 2º-6º for 

2100, while precipitation changes range between -40% to +40% for both 2050 and 2100 

(Figure 2).  

Since crops are differentially sensitive to nighttime and daytime temperatures 

(e.g., Figure 1), subsequent analysis focused only on the six climate models that provided 

monthly output on average daily minimum and maximum temperatures in addition to 

average temperatures and precipitation for both historical and future simulations (CSIRO-

Mk3.0, GISS-AOM, INM-CM3.0, MIROC3.2 (hires), MIROC3.2 (medres), and NCAR 

CCSM3). Three scenario-model combinations were unavailable (Scenario A2 for GISS-

AOM, and A1b and A2 for MIROC3.2 (hires)), leaving a total of 15 scenario-model 

combinations. These six models represent well the range of climate uncertainties seen in 

ensemble of the IPCC models since their trends in average temperature and precipitation 

spanned the range of the entire set of models (Figure 2). A single time series for 1960-

2099 for each scenario-model was generated by averaging the model’s ensemble-mean 

over California. 
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The GCM time series for each month and variable were down-scaled to correct 

for biases in the coarse-scale GCM outputs. First, the trend for the GCM series was 

computed as a 41-year moving average and subtracted from the original GCM time 

series. This detrended time series was then divided by the standard deviation over the 

1980-2000 period. Observed monthly time series for 1980-2000 were computed 

separately for each crop by weighting observed values from 382 individual stations by 

the proportion of crop area in the stations’ counties (Lobell et al. 2006). For each crop, 

the standardized GCM time series were then multiplied by the standard deviation of the 

observed climate record for 1980-2000, and then added to the average difference between 

observed and GCM simulated values for 1980-2000. The previously removed GCM trend 

was added back to produce a final simulated time series. This downscaling approach 

ensures that the simulated mean and variance match the observational record for the 

period 1980-2000, while preserving any simulated trends in mean or variance of each 

climatic variable for each month (Maurer and Duffy, 2005; Wood et al., 2002).  

2.3 Uncertainty Analysis 

The yield models were applied to the monthly simulations of minimum and 

maximum temperatures and precipitation for 1980-2099 to assess impacts of climate 

change on yields. The effect of climate model uncertainty was assessed by applying the 

yield models to each of the individual climate scenarios, producing a distribution of 

yields for each simulation year. The results obtained from this analysis are referred to as 

yield impacts with climate uncertainty only. The combined impact of crop and climate 

model uncertainty was assessed by creating 100 separate crop models, based on bootstrap 

resampling of the historical data, and applying each model to each climate time series. 
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These results are referred to as yield impacts with both climate and crop uncertainty. As 

discussed above, crop models were applied first with and then without truncation of 

simulated values to historical extremes, as a measure of extrapolation uncertainty. 

 

3. Results and Discussion 

3.1 Projected Yield Impacts and Uncertainties 

Median projections for wine grape yields exhibited very small changes over the 

next century due to climate change, while the other five crops exhibited moderate to 

substantial yield declines (Figure 3). The impact of climate uncertainty on projections 

was substantial but not overwhelming. For example, the 95th percentile of yield change 

generally differed from the median projection by less than 10% of current yields for all 

crops except avocados, in the case without model extrapolation. The uncertainties were 

slightly larger in the negative direction. The differences in climate uncertainty between 

crops reflect the fact that each crop responds in different ways to climate. 

Crop model sampling uncertainty added significantly to the overall uncertainty in 

projected yield changes (Figure 3), although the impact was smaller than for climate 

uncertainty. When yields were allowed to exceed historical extremes (Figure 4), three 

important results were observed. First, the effect of both climate and crop model 

sampling uncertainty was increased, indicating that uncertainties can interact. For 

example, estimates of the effect climate uncertainty will depend on the type of crop 

model used (in this case, whether it allows extrapolation or not). This finding agrees with 

the observation by Mearns et al. (1999) that the impact of climate model resolution 

differed greatly depending on the crop model used. 
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Second, the impact of extrapolation uncertainty was very large for some crops 

(walnuts, avocados) but relatively small for others (almonds). Third, even for crops such 

as avocados, the impact of extrapolation uncertainty was small until ~2020, after which it 

became more important. These latter points suggest that while the occurrence of climate 

conditions outside historical ranges, and the consequent uncertainties associated with 

extrapolation, may be important for long-term projections, they may be relatively minor 

for time scales of interest for most adaptation studies. Instead, the most important 

changes over these time scales are the increasing frequency of warm years for which 

historical analogues do exist. While a common criticism of empirical models is their 

inability to extrapolate beyond past climate (e.g., Challinor et al., 2003), this deficiency 

may be largely irrelevant over the next few decades for many crops.  

Even with consideration of both crop and climate model uncertainties and with 

the conservative estimate that yield changes are limited to historical extremes (Figure 3), 

less than 5% of simulations for almonds, table grapes, walnuts, and avocados indicated a 

zero or positive response to climate change by mid-century. Two main factors contribute 

to this result. First, all of these crops are either at or above their optimum temperatures in 

current climate (Figure 1), and all climate models project at least some warming (Figure 

2). Second, all of these crops are irrigated, so that the large uncertainties in precipitation 

projections (Figure 2) have a relatively minor effect.  

Thus, despite uncertainties in emission scenarios, climate responses, and crop 

behavior, the unambiguous effect of warming from climate change will be to reduce 

yields for several major perennials. Our approach did not account for non-climatic trends 

that affect yields, such as increased atmospheric CO2 and management or technological 
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changes, and therefore cannot estimate net changes in yields from present. The yield 

trends since 1980 for these crops (Table 1) are negative for avocados but positive for the 

other crops, ranging from 9% to 57% over 24 years. Analysis of historical climate trends 

indicate that little if any of these yield trends can be attributed directly to climate (Lobell 

et al, 2006). Thus, past changes in technology and atmospheric CO2 improved yields as 

much or more than the median anticipated effect of climate change over the next two 

decades.  

In the future, actual yield changes will reflect the combined influence of the 

(generally negative) effects of warming and the potentially positive effects of 

management, technology, and atmospheric CO2. The effects of elevated atmospheric CO2 

on perennial crops are not well known (Bindi et al., 2001). A recent meta-analysis of 

free-air CO2 enrichment (FACE) experiments with various (mostly annual) crops 

concluded that yield increases under elevated CO2 (~475-600 ppm) average roughly 17% 

(Ainsworth and Long, 2005). While climate change is only one of several factors that will 

significantly influence future yields, it appears that future gains from improved 

management, varieties, and elevated CO2 and technology will need to be roughly as large 

as in the past simply to offset the reductions from warming. 

The economic impacts of climate related yield losses will be distributed between 

producers and consumers through effects of yield changes on prices (Adams et al., 1990; 

Mjelde et al., 2000; Reilly et al., 2003). Three of the crops studied here – almonds, 

oranges, and avocados – exhibited a significant (p < 0.05) negative correlation between 

statewide production and prices since 1980. For example, a 50% decline in almond yields 

from 1994 to 1995 corresponded to roughly a doubling of almond prices over the same 
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time period. Thus, yield declines may incur much higher costs to consumers than 

producers, whose profits may be helped by higher prices. 

 

3.2. Potential impacts of shifts in growing regions 

The simulated impacts are based on the assumption that producers do not move to 

other locations with more favorable climates.  Especially with long-lived perennial 

plants, moving to another region within California is a limited option. Still, we assessed 

the potential impact of shifting production toward counties with more favorable climate 

by simulating, for each county, the expected yields under current climate and scenarios of 

2 ºC and 4 ºC warming (Table 2). Much of the current area is in counties that have among 

the highest simulated yields, indicating that producers have selected regions appropriate 

for each crop as well as varieties well suited to the regions of current production. Under 2 

ºC warming, there are no counties in California in which walnut yield reaches 95% of the 

current state average.  For almonds, table grapes, and avocados in a climate 2 ºC warmer, 

some areas in the state have climate conditions consistent with yields near or even above 

current levels.  These are, however, sufficiently disjoint from the areas with the bulk of 

current production that the necessary shifts in production could be difficult, expensive, or 

culturally challenging. In addition, as our model considers only climatic constraints to 

yields, some of the counties may be less suitable in reality than predicted here.  

For 4 ºC warming, fewer counties exhibit yields at least 95% of current averages, 

and all crops except wine grapes have less than 5% of current area in these counties. For 

oranges, walnuts, and avocados, not only are the areas with the potential for high yields 

dramatically reduced – the areas with appropriate climate tend to be in dry or 
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mountainous regions with limited opportunities for agriculture. As future climate will 

significantly change the relative suitability of counties within California for perennial 

agriculture, opportunities may exist to shift production in response to climate change. The 

feasibility of these shifts would, however, depend on a range of other factors, including 

topography, soils, irrigation infrastructure, transportation infrastructure, and competing 

land uses.   

4. Conclusions 

The results of this study indicate that climate changes are likely to exert a 

significant downward pressure on yields of several major perennial crops in California. 

These effects are likely to occur within the lifetime of trees and vines that are currently in 

the ground, especially for almonds. Thus, while adaptations such as planting new 

varieties and shifting to new areas may reduce impacts in the long term (a topic that 

deserves future research), short term losses may largely be unavoidable.  

Given the increasing globalization of food production, the net effect of climate 

change on California growers and consumers may depend as much or more on what 

happens in other regions as what happens locally. Thus, global assessments of perennial 

crop impacts, such as those that have been attempted for annual crops, appear warranted. 

Such assessments would ideally also consider trends in demand and technologies, which 

can interact with climate changes.  

The long time horizon of perennial agriculture creates special challenges in a 

changing climate. Favorable areas may become unfavorable during the life of a single 

orchard or vineyard. The choice of a variety is complicated by the risk that the best 

variety for the current climate may be poorly suited for future climates. In addition, the 
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perennial habit slows the process of developing new varieties, potentially limiting the 

options for shifting varieties to cope with a changing climate (Koski, 1996). While these 

factors do not necessarily mean that perennial agriculture is more vulnerable than other 

sectors, they argue for effective integration of climate science with agricultural practice. 
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Figure Legends: 

 

Figure 1. Observed (points) and modeled (line) yield anomalies for 1980-2003 vs. most 

important temperature anomaly (ºC) for each crop. Vertical line shows 1980-2003 

average temperature. 

 

Figure 2. Change in California annual average temperature (a) and precipitation (b) for 

2070-2100 period relative to 1960-1990 for different models and scenarios in PCMDI 

database. Gray points show models whose output were used in crop models. Scenarios 

are A1b (square), A2 (circle), and B1 (triangle). See Table 2 for description of model 

names. 

 

Figure 3. Crop yield changes associated with future climate scenarios, with yield 

anomalies constrained to historical extremes. Yields are expressed in units of percent 

anomaly from 2000-2003 average yields, and are plotted as 19-year running averages to 

highlight trends rather than year-to-year variability. Black line shows median projections, 

dark shaded area shows 90% confidence interval after accounting for climate uncertainty, 

and light shaded area shows 90% confidence interval after accounting for both climate 

and crop uncertainty. 

 

Figure 4. Same as Figure 3 except yields were allowed to exceed historical extremes 
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Table 1. Life span and trends in area and yield for six major California perennial crops  

*Life span and production information from http://coststudies.ucdavis.edu/ 

 

 
Wine 

grapes 
Almonds 

Table 
grapes 

Oranges Walnuts Avocados 

Productive 
life* (years) 

25 22-25 25 40 35 30 

First harvest 
(age in years) 

3 3 2-3 2-4 4 3 

Full production 
(age in years) 

5-6 6 4 12-13 8 7 

Area change 
1980-2003 

116% 69% 68% 22% 26% -12% 

Yield change 
1980-2003 

9% 57% 25% 9% 24% -44% 
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 Table 2. Names of climate models whose output are shown in Figure 2. Only models with tmin and tmax were used for crop yield 
projections. Description of models available at http://www-pcmdi.llnl.gov. 

Model Name Model Description Country Tmin & Tmax

BCCR-BCM2.0 Bjerknes Centre for Climate Research Norway  
BCC-CM1 Beijing Climate Center  China  
CCSM3 National Center for Atmospheric Research USA X 
CGCM3.1(T47) Canadian Centre for Climate Modelling & Analysis Canada  
CGCM3.1(T63) Canadian Centre for Climate Modelling & Analysis Canada  
CNRM-CM3 Météo-France / Centre National de Recherches Météorologiques France  
CSIRO-Mk3.0 CSIRO Atmospheric Research Australia X 
ECHAM5/MPI-OM Max Planck Institute for Meteorology Germany  

ECHO-G Meteorological Institute of the University of Bonn, Meteorological Research Institute 
of KMA, and Model and Data group.  Germany / Korea  

FGOALS-g1.0 LASG / Institute of Atmospheric Physics China  
GFDL-CM2.0 US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory USA  
GFDL-CM2.1 US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory USA  
GISS-AOM NASA / Goddard Institute for Space Studies USA X 
GISS-EH NASA / Goddard Institute for Space Studies USA  
GISS-ER NASA / Goddard Institute for Space Studies USA  
INM-CM3.0 Institute for Numerical Mathematics Russia X 
IPSL-CM4 Institut Pierre Simon Laplace France  

MIROC3.2(hires) Center for Climate System Research (The University of Tokyo), National Institute for 
Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC) Japan X 

MIROC3.2(medres) Center for Climate System Research (The University of Tokyo), National Institute for 
Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC) Japan X 

MRI-CGCM2.3.2 Meteorological Research Institute Japan  
PCM National Center for Atmospheric Research USA  
UKMO-HadCM3 Hadley Centre for Climate Prediction and Research / Met Office UK  
UKMO-HadGEM1 Hadley Centre for Climate Prediction and Research / Met Office UK  
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Table 3. The number of counties in different climate scenarios with average simulated 
yields of at least 95% of the current state average, and the percentage of current crop area 
within those counties.  

Crop Current Climate + 2 ºC + 4 ºC 

 # counties % current 
area # counties % current 

area # counties % current 
area 

Wine 
Grapes  25 80.9 38 76.9 26 32.5 

Almonds 31 70.0 18 8.0 13 1.3 

Table 
Grapes  7 83.7 10 38.3 10 4.4 

Oranges 7 67.3 4 70.5 1 0.0 

Walnuts 18 64.8 0 0.0 0 0.0 

Avocados 1 40.8 2 0.0 2 2.9 
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