Fast Reactor Spent Fuel Processing: Experience and Criticality Safety

PDF Version Also Available for Download.

Description

This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a ... continued below

Creation Information

Pope, Chad May 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a cathode, causing metallic uranium in the spent fuel to undergo electro-chemical oxidation thereby forming uranium chloride. Simultaneously at the cathode, uranium chloride undergoes electro-chemical reduction and deposits uranium metal onto the mandrel. The uranium metal and accompanying entrained salt are placed in a distillation furnace where the uranium melts forming an ingot and the entrained salt boils and subsequently condenses in a separate crucible. The uranium ingots are placed in long term storage. During the ten year operating history, over one hundred criticality safety evaluations were prepared. All criticality safety related limits and controls for the entire process are contained in a single document which required over thirty revisions to accommodate the process changes. Operational implementation of the limits and controls includes use of a near real-time computerized tracking system. The tracking system uses an Oracle database coupled with numerous software applications. The computerized tracking system includes direct fuel handler interaction with every movement of material. Improvements to this system during the ten year history include introduction of web based operator interaction, tracking of moderator materials and the development of a plethora database queries to assist in day to day operations as well as obtaining historical information. Over 12,000 driver fuel elements have been processed resulting in the production of 2500 kg of 20% enriched uranium. Also, over one thousand blanket fuel elements have been processed resulting in the production of 2400 kg of depleted uranium. These operations required over 35,000 fissile material transfers between zones and over 6000 transfers between containers. Throughout all of these movements, no mass limit violations occurred. Numerous lessons were learned over the ten year operating history. From a criticality safety perspective, the most important lesson learned was the involvement of a criticality safety practitioner in daily operations. A criticality safety engineer was assigned directly to facility operations, and was responsible for implementation of limits and controls including upkeep of the associated computerized tracking files. The criticality safety engineer was also responsible for conducting fuel handler training activities including serving on fuel handler qualification oral boards, and continually assessing operations from a criticality control perspective. The criticality safety engineer also attended bimonthly project planning meetings to identify upcoming process changes that would require criticality safety evaluation. Finally, the excellent criticality safety record was due in no small part to the continual support, involvement, trust, and confidence of project and operations mana

Source

  • Safety Analysis Working Group 2007 Annual Workshop,Idaho Falls, Idaho,05/19/2007,05/24/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-07-12106
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 912451
  • Archival Resource Key: ark:/67531/metadc888830

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 6:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pope, Chad. Fast Reactor Spent Fuel Processing: Experience and Criticality Safety, article, May 1, 2007; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc888830/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.