The Interaction of a Circular Synthetic Jet with a Cross-Flow Boundary Layer

PDF Version Also Available for Download.

Description

The interaction of a circular synthetic jet with a laminar cross-flow boundary layer was investigated experimentally in the Matched-Index-of-Refraction flow facility at Idaho National Laboratory. Two orifice orientations were investigated, straight and inclined. For each orifice, phase-averaged and time-averaged PIV measurements were made at L◦/D◦ = 1.0 and 2.0 with ReU◦ = 250 and r = 1.12. Refractive index matching between the working fluid and the model material permitted experimental measurements of the flow field inside the actuator orifice and cavity simultaneously. At L◦/D◦ = 1.0, the vortex ring formed at the orifice during the expulsion portion of the actuator ... continued below

Creation Information

McEligot, D. M.; Pink, R. J.; Shuster, Jennifer M. & Smith, Douglas R. June 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 22 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The interaction of a circular synthetic jet with a laminar cross-flow boundary layer was investigated experimentally in the Matched-Index-of-Refraction flow facility at Idaho National Laboratory. Two orifice orientations were investigated, straight and inclined. For each orifice, phase-averaged and time-averaged PIV measurements were made at L◦/D◦ = 1.0 and 2.0 with ReU◦ = 250 and r = 1.12. Refractive index matching between the working fluid and the model material permitted experimental measurements of the flow field inside the actuator orifice and cavity simultaneously. At L◦/D◦ = 1.0, the vortex ring formed at the orifice during the expulsion portion of the actuator cycle blocks the boundary layer causing the flow to divert over and around the ring. This vortex ring does not escape the near-vicinity of the orifice and is subsequently re-ingested. At the same stroke, inclining the orifice axis 30◦ downstream leads to a jet comprised of a train of vortex rings that penetrates the cross-flow. At L◦/D◦ = 2.0, both the straight and inclined orifices create large discrete vortex rings that penetrate deep into the cross-flow, and consequently do not affect the boundary layer much beyond the near-field of the orifice.

Source

  • AIAA Fluid Dynamics Conference,Toronto, Canada,06/06/2005,06/09/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INEEL/CON-04-02464
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911111
  • Archival Resource Key: ark:/67531/metadc888793

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 5, 2016, 9:27 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 1
Total Uses: 22

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

McEligot, D. M.; Pink, R. J.; Shuster, Jennifer M. & Smith, Douglas R. The Interaction of a Circular Synthetic Jet with a Cross-Flow Boundary Layer, article, June 1, 2005; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc888793/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.