Environmental geochemistry of radioactive contamination.

PDF Version Also Available for Download.

Description

This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the ... continued below

Physical Description

114 p.

Creation Information

Bryan, Charles R. & Siegel, Malcolm Dean September 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the groundwater and geomedia as well as the atomic structure of the radionuclides. The chemistry of the fission products is relatively simple compared to the actinides. Because of their relatively short half-lives, fission products account for a large fraction of the radioactivity in nuclear waste for the first several hundred years but do not represent a long-term hazard in the environment. The chemistry of the longer-lived actinides is complex; however, some trends in their behavior can be described. Actinide elements of a given oxidation state have either similar or systematically varying chemical properties due to similarities in ionic size, coordination number, valence, and electron structure. In dilute aqueous systems at neutral to basic pH, the dominant actinide species are hydroxy- and carbonato-complexes, and the solubility-limiting solid phases are commonly oxides, hydroxides or carbonates. In general, actinide sorption will decrease in the presence of ligands that complex with the radionuclide; sorption of the (IV) species of actinides (Np, Pu, U) is generally greater than of the (V) species. The geochemistry of key radionuclides in three different environments is described in this report. These include: (1) low ionic strength reducing waters from crystalline rocks at nuclear waste research sites in Sweden; (2) oxic water from the J-13 well at Yucca Mountain, Nevada, the site of a proposed repository for high level nuclear waste (HLW) in tuffaceous rocks; and (3) reference brines associated with the Waste Isolation Pilot Plant (WIPP). The transport behaviors of radionuclides associated with the Chernobyl reactor accident and the Oklo Natural Reactor are described. These examples span wide temporal and spatial scales and include the rapid geochemical and physical processes important to nuclear reactor accidents or industrial discharges as well as the slower processes important to the geologic disposal of nuclear waste. Application of geochemical information to remediating or assessing the risk posed by radioactive contamination is the final subject of this report. After radioactive source terms have been removed, large volumes of soil and water with low but potentially hazardous levels of contamination may remain. For poorly-sorbing radionuclides, capture of contaminated water and removal of radionuclides may be possible using permeable reactive barriers and bioremediation. For strongly sorbing radionuclides, contaminant plumes will move very slowly. Through a combination of monitoring, regulations and modeling, it may be possible to have confidence that they will not be a hazard to current or future populations. Abstraction of the hydrogeochemical properties of real systems into simple models is required for probabilistic risk assessment. Simplifications in solubility and sorption models used in performance assessment calculations for the WIPP and the proposed HLW repository at Yucca Mountain are briefly described.

Physical Description

114 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2003-2063
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/915153 | External Link
  • Office of Scientific & Technical Information Report Number: 915153
  • Archival Resource Key: ark:/67531/metadc888749

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 5, 2016, 3:05 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bryan, Charles R. & Siegel, Malcolm Dean. Environmental geochemistry of radioactive contamination., report, September 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc888749/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.