Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake; Effects of Operation of Kerr and Hungry Horse Dam on Reproductive Success, 1983 Annual Report.

PDF Version Also Available for Download.

Description

Koktneesalmon (Oncorhvnchusnerka), the land-locked form of sockeye salmon, were originally introduced to Flathead Lake in 1916. My 1933, kokanee had become established in the lake and provided a popular summer trolling fishery as well as a fall snagging fishery in shoreline areas. Presently, Flathead Lake supports the second highest fishing pressure of any lake or reservoir in Montana (Montana Department of Fish and Game 1976). During 1981-82, the lake provided 168,792 man-days of fishing pressure. Ninety-two percent of the estimated 536,870 fish caught in Flathead Lake in 1981-82 were kokanee salmon. Kokanee also provided forage for bull trout seasonally and ... continued below

Physical Description

189 pages

Creation Information

Decker-Hess, Janet & McMullin, Steve L. November 1, 1983.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Koktneesalmon (Oncorhvnchusnerka), the land-locked form of sockeye salmon, were originally introduced to Flathead Lake in 1916. My 1933, kokanee had become established in the lake and provided a popular summer trolling fishery as well as a fall snagging fishery in shoreline areas. Presently, Flathead Lake supports the second highest fishing pressure of any lake or reservoir in Montana (Montana Department of Fish and Game 1976). During 1981-82, the lake provided 168,792 man-days of fishing pressure. Ninety-two percent of the estimated 536,870 fish caught in Flathead Lake in 1981-82 were kokanee salmon. Kokanee also provided forage for bull trout seasonally and year round for lake trout. Kokanee rear to maturity in Flathead Lake, then return to various total grounds to spawn. Spawning occurred in lake outlet streams, springs, larger rivers and lake shoreline areas in suitable but often limited habitat. Shoreline spawning in Flathead Lake was first documented in the mid-1930's. Spawning kokanee were seized from shoreline areas in 1933 and 21,000 cans were processed and packed for distribution to the needy. Stefanich (1953 and 1954) later documented extensive but an unquantified amount of spawning along the shoreline as well as runs in Whitefish River and McDonald Creek in the 1950's. A creel census conducted in 1962-63 determined 11 to 13 percent of the kokanee caught annually were taken during the spawning period (Robbins 1966). During a 1981-82 creel census, less than one percent of the fishermen on Flathead Lake were snagging kokanee (Graham and Fredenberg 1982). The operation of Kerr Dam, located below Flathead Lake on the Flathead River, has altered seasonal fluctuations of Flathead Lake. Lake levels presently remain high during kokanee spawning in November and decline during the incubation and emergence periods. Groundwater plays an important role in embryo and fry survival in redds of shoreline areas exposed by lake drawdown. Stefanich (1954) and Domrose (1968) found live eggs and fry only in shoreline spawning areas wetted by groundwater seeps. Impacts of the operation of Kerr Dam on lakeshore spawning have not been quantified. Recent studies have revealed that operation of Hungry Horse Dam severely impacted successful kokanee spawning and incubation in the Flathead River above Flathead Lake (Graham et al. 1980, McMullin and Graham 1981, Fraley and Graham 1982 and Fraley and McMullin 1983). Flows from Hungry Horse Dam to enhance kokanee reproduction in the river system have been voluntarily met by the Bureau of Reclamation since 1981. In lakeshore spawning areas in other Pacific Northwest systems, spawning habitat for kokanee and sockeye salmon was characterized by seepage or groundwater flow where suitable substrate composition existed (Foerster 1968). Spawning primarily occurred in shallower depths (<6 m) where gravels were cleaned by wave action (Hassemer and Rieman 1979 and 1980, Stober et al. 1979a). Seasonal drawdown of reservoirs can adversely affect survival of incubating kokanee eggs and fry spawned in shallow shoreline areas. Jeppon (1955 and 1960) and Whitt (1957) estimated 10-75 percent kokanee egg loss in shoreline areas of Pend Oreille Lake, Idaho after regulation of the upper three meters occurred in 1952. After 20 years of operation, Bowler (1979) found Pend Oreille shoreline spawning to occur in fewer areas with generally lower numbers of adults. In studies on Priest Lake, Idaho, Bjornn (1957) attributed frozen eggs and stranded fry to winter fluctuations of the upper three meters of the lake. Eggs and fry frozen during winter drawdown accounted for a 90 percent loss to shoreline spawning kokanee in Donner Lake, California (Kimsey 1951). Stober et al. (1979a) determined irrigation drawdown of Banks Lake, Washington reduced shoreline survival during five of the seven years the system was studied. The goal of this phase of the study was to evaluate and document effects of the operation of Kerr Dam on kokanee shoreline reproduction in Flathead Lake. Specific objectives to meet this goal are: (1) Delineate the extent of successful shoreline spawning in Flathead Lake both on-shore (to an approximate depth of 6.1 m below full pool elevation) and off-shore (approximately 6.1-21.3 m below full pool elevation). (2) Quantify and qualify influence of groundwater on reproductive success of on-shore spawners. The effects of groundwater on spawning and incubation on off-shore spawners will also be studied. Rates of groundwater discharge and groundwater chemistry will be established in spawning and non-spawning areas. Those data will be compared and contrasted in an attempt to delineate parameters affecting spawning site selection and embryo success. (3) Determine the relative contributions of major spawning areas to the total kokanee population.

Physical Description

189 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/BP-204
  • Grant Number: 1983BP39641
  • DOI: 10.2172/901139 | External Link
  • Office of Scientific & Technical Information Report Number: 901139
  • Archival Resource Key: ark:/67531/metadc888736

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1983

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Decker-Hess, Janet & McMullin, Steve L. Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake; Effects of Operation of Kerr and Hungry Horse Dam on Reproductive Success, 1983 Annual Report., report, November 1, 1983; United States. (digital.library.unt.edu/ark:/67531/metadc888736/: accessed October 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.