Development and Validation of Sterility Systems for Trees

PDF Version Also Available for Download.

Description

The overall goal of this project was to develop and validate sterility systems in poplar with the ultimate goal of fulfilling the basic requirements for commercial use. For this, sterility must be complete and stable over multiple growing seasons, cause no detrimental effects on vegetative growth, and successful transformation events must be identifiable via molecular tests when trees are still juvenile. Because of the inherent difficulties in achieving and demonstrating complete sterility in trees, our approach was to study alternate sterility systems in Arabidopsis and/or early-flowering tree systems. The public benefit from this work is the capacity for containment of ... continued below

Physical Description

1689 KB; 6 Tables, 33 Figures; 29 pages

Creation Information

Strauss, Steve; Shevchenko, Olga & Ma, Caiping (Cathleen) March 30, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The overall goal of this project was to develop and validate sterility systems in poplar with the ultimate goal of fulfilling the basic requirements for commercial use. For this, sterility must be complete and stable over multiple growing seasons, cause no detrimental effects on vegetative growth, and successful transformation events must be identifiable via molecular tests when trees are still juvenile. Because of the inherent difficulties in achieving and demonstrating complete sterility in trees, our approach was to study alternate sterility systems in Arabidopsis and/or early-flowering tree systems. The public benefit from this work is the capacity for containment of genes or exotic forms of trees so they can be of benefit for industry for production of wood, energy, and renewable products, while having minimal impact on wild populations of trees. We tested three methods for engineering sterility: dominant negative mutant (DNM) proteins, floral tissue ablation, and RNA interference (RNAi) to suppress the expression of several floral regulatory genes. The ultimate goal of this work was to produce a number of transgenic poplars that could be outplanted to enable future assessments of the effectiveness of these transgenic sterility methods. Our attempts to produce ablation constructs that did not interfere with tree health were partially successful. Using the poplar LEAFY gene promoter and the barnase/barstar system, we were able to regenerate plants that grew well in the greenhouse, but they showed poor health in the field. Four of seven DNM genes tested were considered promising enough, based on results in Arabidopsis, to produce transgenic poplars. Single, double, and triple RNAi genes were produced and transformed into poplar. Over all, we produced 1,964 PCR-confirmed transgenic events with 19 different kinds of sterility genes and several kinds of control genes. We propagated 5,640, 6,820, and 7,055 trees for each of three test poplar genotypes, and field plantings were begun in Spring of 2003 and will be finished in Spring 2007. Continued field studies and monitoring will be required to establish if any of the approaches we have taken will prove to be safe for tree health, stable, and provide reliable containment.

Physical Description

1689 KB; 6 Tables, 33 Figures; 29 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ID/13552
  • Grant Number: FC36-97ID13552
  • DOI: 10.2172/901554 | External Link
  • Office of Scientific & Technical Information Report Number: 901554
  • Archival Resource Key: ark:/67531/metadc888728

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 30, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 10:42 a.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Strauss, Steve; Shevchenko, Olga & Ma, Caiping (Cathleen). Development and Validation of Sterility Systems for Trees, report, March 30, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc888728/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.