Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite.

PDF Version Also Available for Download.

Description

Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp}>10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is ... continued below

Physical Description

17 p.

Creation Information

Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony (University of Arizona, Yuma, AZ); Zhao, Hongting; Salas, Fred Manuel et al. April 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp}>10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

Physical Description

17 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2004-1243
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/918746 | External Link
  • Office of Scientific & Technical Information Report Number: 918746
  • Archival Resource Key: ark:/67531/metadc888703

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 2004

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 7:53 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony (University of Arizona, Yuma, AZ); Zhao, Hongting; Salas, Fred Manuel et al. Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite., report, April 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc888703/: accessed July 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.