Evidence Of Rapid Localized Groundwater Transport In Volcanic Tuffs Beneath Yucca Mountain, Nevada

PDF Version Also Available for Download.

Description

At Yucca Mountain, Nevada-the proposed location for a national high-level nuclear waste repository-radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be ... continued below

Creation Information

Freifeld, B.; Doughty, C.; Walker, J.; Kryder, L.; Gilmore, K.; Finsterle, S. et al. September 7, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

At Yucca Mountain, Nevada-the proposed location for a national high-level nuclear waste repository-radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Cratei Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP-24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux. Corroborating FEC observations, the DTPS has identified two flowing intervals within the Bullfrog tuff that are each approximately 20 m thick and exhibit an average specific discharge of 50 m/yr. Assuming a fracture porosity of 1%, groundwater velocities are estimated to be on the order of 5 to 10 km/yr. While these results are for one borehole, heterogeneity in the flow system may play a significant role in determining regional groundwater flow. Additional data, including geochemical and isotopic, will be needed to provide a more complete picture of the origin of the groundwater in these fast flow paths, and aid in the determination of the lateral extent of the identified flowing intervals.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NA
  • Grant Number: NA
  • DOI: 10.2172/894308 | External Link
  • Office of Scientific & Technical Information Report Number: 894308
  • Archival Resource Key: ark:/67531/metadc888657

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 7, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 28, 2016, 1:47 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Freifeld, B.; Doughty, C.; Walker, J.; Kryder, L.; Gilmore, K.; Finsterle, S. et al. Evidence Of Rapid Localized Groundwater Transport In Volcanic Tuffs Beneath Yucca Mountain, Nevada, report, September 7, 2006; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc888657/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.