Experiment on mass-stripping of interstellar cloud following shock passage

PDF Version Also Available for Download.

Description

The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon which can lead to mass-stripping (transfer of material from cloud to surrounding flow, ''mass-loading'' the flow) and possibly increase the compression in the cloud to high enough densities to trigger star formation. Our experiments attempt to simulate and quantify the mass-stripping as it occurs when a shock passes through interstellar clouds. We drive a strong shock using 5 kJ of the 30 kJ Omega laser into a cylinder filled with low-density foam with an embedded 120 {micro}m Al sphere simulating an interstellar cloud. The density ratio between ... continued below

Physical Description

PDF-file: 26 pages; size: 1 Mbytes

Creation Information

Hansen, J F; Robey, H F; Klein, R I & Miles, A R October 17, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon which can lead to mass-stripping (transfer of material from cloud to surrounding flow, ''mass-loading'' the flow) and possibly increase the compression in the cloud to high enough densities to trigger star formation. Our experiments attempt to simulate and quantify the mass-stripping as it occurs when a shock passes through interstellar clouds. We drive a strong shock using 5 kJ of the 30 kJ Omega laser into a cylinder filled with low-density foam with an embedded 120 {micro}m Al sphere simulating an interstellar cloud. The density ratio between Al and foam is {approx} 9. Time-resolved x-ray radiographs show the cloud getting compressed by the shock (t {approx} 5 ns), undergoing a classical Kelvin-Helmholtz roll-up (12 ns) followed by a Widnall instability (30 ns), an inherently 3d effect that breaks the 2d symmetry of the experiment. Material is continuously being stripped from the cloud at a rate which is shown to be inconsistent with laminar models for mass-stripping (the cloud is fully stripped by 80 ns-100 ns, ten times faster than the laminar model). We present a new model for turbulent mass-stripping that agrees with the observed rate and which should scale to astrophysical conditions, which occur at even higher Reynolds numbers than the current experiment. The new model combines the integral momentum equations, potential flow past a sphere, flat plate skin friction coefficients, and Spalding's law of the wall for turbulent boundary layers.

Physical Description

PDF-file: 26 pages; size: 1 Mbytes

Source

  • Presented at: 48th Meeting of the Division of Plasma Physics, Philadelphia, PA, United States, Oct 30 - Nov 03, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-225774
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 898466
  • Archival Resource Key: ark:/67531/metadc888466

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 17, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 11:20 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hansen, J F; Robey, H F; Klein, R I & Miles, A R. Experiment on mass-stripping of interstellar cloud following shock passage, article, October 17, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc888466/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.