SIMULATIONS OF RHIC COHERENT STABILITIES DUE TO WAKEFIELD AND ELECTRON COOLING

PDF Version Also Available for Download.

Description

The Electron cooling beam has both coherent and incoherent effects to the circulating ion beam. The incoherent longitudinal cooling could reduce the ion beam energy spread and hence cause 'over-cooling' of the ion beam. Depending on the beam densities and cooling length, the coherent interaction between the ion and electron beam could either damp or anti-damp the ion coherent motions. Using the tracking codes, TRANFT, the threshold for 'over-cooling' has been found and compared with theoretical estimation. The transverse coherent effect of electron cooling has been implemented into the codes and its effect for the bunched ion beam is shown.

Creation Information

WANG,G. & BLASKIEWICZ, M. June 25, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Electron cooling beam has both coherent and incoherent effects to the circulating ion beam. The incoherent longitudinal cooling could reduce the ion beam energy spread and hence cause 'over-cooling' of the ion beam. Depending on the beam densities and cooling length, the coherent interaction between the ion and electron beam could either damp or anti-damp the ion coherent motions. Using the tracking codes, TRANFT, the threshold for 'over-cooling' has been found and compared with theoretical estimation. The transverse coherent effect of electron cooling has been implemented into the codes and its effect for the bunched ion beam is shown.

Source

  • 22ND PARTICLE ACCELERATOR CONFERENCE; ALBUQUERQUE, NEW MEXICO; 20070625 through 20070629

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--77351-2007-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 910390
  • Archival Resource Key: ark:/67531/metadc888395

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 25, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 1, 2016, 5:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

WANG,G. & BLASKIEWICZ, M. SIMULATIONS OF RHIC COHERENT STABILITIES DUE TO WAKEFIELD AND ELECTRON COOLING, article, June 25, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc888395/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.