Separating Metallic Beryllium from Plutonium by Selective Dissolution with Ammonium Fluoride

PDF Version Also Available for Download.

Description

Plutonium metal is stabilized for long-term storage by calcining to produce PuO{sub 2}. However, if beryllium is present, the calcined product may have a high neutron dose rate because of the {sup 9}Be({alpha},n){sup 12}C reaction in the finely divided oxide mixture. (At LLNL, inadvertent calcining of a mixture of {approx}500 g Pu/50 g Be produced a neutron source of {approx}5 R/hr.) Therefore, for health physics reasons, we would like a convenient procedure to remove beryllium from plutonium with high selectivity. Two reagents, sodium hydroxide and ammonium fluoride, were considered for aqueous processing. Each reagent selectively dissolves beryllium, which can be ... continued below

Physical Description

7 p. (0.2 MB)

Creation Information

Torres, R A November 29, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Plutonium metal is stabilized for long-term storage by calcining to produce PuO{sub 2}. However, if beryllium is present, the calcined product may have a high neutron dose rate because of the {sup 9}Be({alpha},n){sup 12}C reaction in the finely divided oxide mixture. (At LLNL, inadvertent calcining of a mixture of {approx}500 g Pu/50 g Be produced a neutron source of {approx}5 R/hr.) Therefore, for health physics reasons, we would like a convenient procedure to remove beryllium from plutonium with high selectivity. Two reagents, sodium hydroxide and ammonium fluoride, were considered for aqueous processing. Each reagent selectively dissolves beryllium, which can be separated from the insoluble plutonium by decanting/filtering operations followed by water washes to remove the excess reagent. The washed plutonium is calcined for storage; the beryllium and wash fractions are solidified for disposal.

Physical Description

7 p. (0.2 MB)

Notes

PDF-file: 7 pages; size: 0.2 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-226596
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/896609 | External Link
  • Office of Scientific & Technical Information Report Number: 896609
  • Archival Resource Key: ark:/67531/metadc888383

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 29, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 17, 2017, 12:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Torres, R A. Separating Metallic Beryllium from Plutonium by Selective Dissolution with Ammonium Fluoride, report, November 29, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc888383/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.