An integrated methodology for characterizing flow and transport processes in fractured rock

PDF Version Also Available for Download.

Description

To investigate the coupled processes involved in fluid andheat flow and chemical transport in the highly heterogeneous,unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present anintegrated modeling methodology. This approach integrates a wide varietyof moisture, pneumatic, thermal, and geochemical isotopic field data intoa comprehensive three-dimensional numerical model for modeling analyses.The results of field applications of the methodology show that moisturedata, such as water potential and liquid saturation, are not sufficientto determine in situ percolation flux, whereas temperature andgeochemical isotopic data provide better constraints to net infiltrationrates and flow patterns. In addition, pneumatic data are found to beextremely valuable in estimating … continued below

Creation Information

Wu, Yu-Shu August 31, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

To investigate the coupled processes involved in fluid andheat flow and chemical transport in the highly heterogeneous,unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present anintegrated modeling methodology. This approach integrates a wide varietyof moisture, pneumatic, thermal, and geochemical isotopic field data intoa comprehensive three-dimensional numerical model for modeling analyses.The results of field applications of the methodology show that moisturedata, such as water potential and liquid saturation, are not sufficientto determine in situ percolation flux, whereas temperature andgeochemical isotopic data provide better constraints to net infiltrationrates and flow patterns. In addition, pneumatic data are found to beextremely valuable in estimating large-scale fracture permeability. Theintegration of hydrologic, pneumatic, temperature, and geochemical datainto modeling analyses is thereby demonstrated to provide a practicalmodeling approachfor characterizing flow and transport processes incomplex fractured formations.

Source

  • Journal Name: Journal of China University of Geosciences; Journal Volume: 18; Journal Issue: SI; Related Information: Journal Publication Date: 06/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--63411
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 918824
  • Archival Resource Key: ark:/67531/metadc888110

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 31, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 27, 2020, 8:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wu, Yu-Shu. An integrated methodology for characterizing flow and transport processes in fractured rock, article, August 31, 2007; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc888110/: accessed April 19, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen