
SANDIA REPORT 
SAND20034732 
Unlimited Release 
Printed December 2003 

parlmenl of Energy's 
cl DE-AC04-94AL85000. 

: furlher dissemination unlimited 

Sandia National laboratories 
.,,.,, .. . 
:r' 



Issued by Sandia National Laboratories, operated for the United 
States Department of Energy by Sandia Corporation. 
NOTICE: This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government, nor any agency thereof, nor any of their 
employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express 
or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus. product, or p m e s s  disclosed, or represent that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer. or otherwise, does not necessarily wnstitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of their 
contractors 01 subcontracton. The views and opinions expressed herein do not necessarily stste or reflect 
those of the United States Government. any agency thexeof. or any of their contractors. 

Printed in the United States of America. This report has been reproduced dirstly from the best available 
COPY. 

Available to DOE and DOE contractors from 
US. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge. TN 37831 

Telephone: (865)576-8401 
Facsimile: (865)576-5728 

Online ordering: h t & A i w w w . d w . z o v ~  
&Mail: reports@adonis . o w  

Available to the public from 
U S  Department of Commerce 
National Technical Information Servir- 
5285 Port Royal Rd 
Springfield, VA 22161 

Telephone: (800)553-6847 
Facamile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov 
Online order: htto:iiwww.nt-n ?loc=7.4.0#onliw 

- 2 -  

mailto:orders@ntis.fedworld.gov


SAND2003-8732 
Unlimited Release 

Printed December 2003 

First Principles Determination of Dislocation 
Properties 

John C. Hamilton 
Materials Physics- Department 

Sandia National Laboratories 
P. 0. Box 969 

Livermore, CA 94551-0969 

ABSTRACT 

This report details the work accomplished on first principles determination of 
dislocazon properties. It contains an introduction and three chapters detailing three 
major accomplishments. First, we have used first principle calculations to determine 
the shear strength of an aluminum twin boundary. We find it to be remarkably small 
(-17 mJ/m2). This unexpected result is explained and will likely pertain for many 
other grain boundaries. Second, we have proven that the conventional explanation for 
finite grain boundary facets is wrong for a particular aluminum grain boundary. 
Instead of finite facets being stabilized by grain boundary stress, we find them to 
originate from kinetic effects. Finally we report on a new application of the Frenkel- 
Kontorova model to understand reconstructions of (100) type surfaces. In addition to 
the commonly accepted formation of rectangular dislocation arrays, we find numerous 
other possible solutions to the model including hexagonal reconstructions and a clock- 
rotated structure. 
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INTRODUCTION 

Dislocations are one of the most fundamental microstructural aspects of materials science. Dislocations are 
found in bulk materials, in thin films and at surfaces. Dislocations play a major role in determining 
mechanical and other properties of materials. Study of dislocations using first principles techniques has been a 
long-standing challenge because the number of atoms in a unit cell is typically large. In this report we discuss 
three practical examples of multiscale modeling of dislocations based on first principles calculations. This f r s t  
chapter provides a brief introduction to the rational and to the subjects to be covered. 

In the second chapter, we turn to the study of grain boundary shearing. Grain boundaries are often understood 
and modeled as an a m y  of dislocations. We introduce the concept of a “generalized gamma surface” which 
can incorporate such phenomena as grain boundary translation during sliding. The generalized gamma surface 
allows us to calculate the stress required to shear a grain boundary. It also allows us to calculate the width of 
certain classes of observed dislocation structures. 

In the third chapter, we discuss the equilibrium length of facets at a faceted grain boundary. This topic has a 
major impact in terms of understanding grain boundary phase transitions. We begin by discussing the strain 
fields which play a major role in determining facet lengths. Because bond lengths tend to be shorter across a 
grain boundary, there i s  a translation vector which produces a dislocation at the junction between two grain 
boundaries. We incorporate these concepts into a continuum elasticity model. Using first principles we 
calculate the Burger’s vector of the grain boundary junctions and the stress of a grain boundary facet. In 
contrast to present qualitative theory, we find using quantitative first principles methods that the equilibrium 
length is infmite. This implies that kinetic arguments are the probable cause of observed finite facets. 

In the fourth chapter we turn to the subject of dislocation structure for surfaces and thin films. Here we show 
that the Frenkel-Kontorova model can predict a wide range of dislocation structures for films with square 
symmetry. We also predict a novel “clock-rotated” structure as a strain relief alternative to dislocations. This 
structure is verified using first-principles calculations. 
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II. FIRST-PRINCIPLES CALCULATIONS OF GRAIN 
BOUNDARY 

Theoretii/ Shear Strength Using Transition State Finding to Determine 
Genera//ired Gamma Surface Cross Sections 

The gamma surface for a simple solid-solid interface was originally defined by Vitek.[l] The gamma 
surface is the excess energy of the interface as the lattice on one side of the interface is translated 
relative to the lattice on the other side of the interface. The gamma surface is an important concept in 
the study of interfaces and grain boundaries in solids. As discussed by Sutton and Balluffi,[2] the 
gamma surface is useful in understanding both grain boundary sliding and the structure of grain 
boundary dislocations. For low index shear planes in single crystals, the definition and calculation of 
a gamma surface is relatively straightforward. Typically the atomic coordinates on one side of the 
interface are rigidly translated, constrained in the directions parallel to the interface, and then relaxed 
to an energy minimum in the direction perpendicular to the interface.[3] Here we present an example 
of grain boundary sliding which involves complex cooperative atomic motions in addition to rigid 
translation of the atoms on the two sides of the grain boundary In order to quantify the energy of 
these complex atomic motions, we propose a new concept, the "generalized gamma surface". 

In order to discuss the connection between grain boundary sliding, grain boundary gamma surfaces, 
and transition state finding techniques, we consider a specific example, the A1 Z 3(112)/[1 101 tilt 
boundary. We first review methods used in previous first-principles calculations of shearing of 
bicrystals[4,5] and single crystals.[6] We next show that the apparently simple definition of a gamma 
surface needs to be modified for some grain boundaries because complex cooperative motions of 
atoms at the grain boundary can occur as one lattice is translated relative to the lattice on the other 
side of the grain boundary. We propose the use of recently developed transition-state-finding 
techniques as an appropriate way to calculate relevant cross sections of the gamma surface for grain 
boundaries. Finally we apply a first-principles calculation of this type to calculate the theoretical 
shear strength of the A1 Z 3 (l 12) tilt boundary in a bicrystal. 

One way to investigate grain boundary sliding is to subject a bicrystal to a shear stress parallel to the 
grain boundary as shown in figure 2-1. Previous first-principles calculations of grain boundary 
sliding have used this approach.[4,5] The theoretical shear strength of a perfect single crystal has also 
been calculated in a similar manner.[6] In drawing figure 2-1, we have assumed that the shear 
strength of the grain boundary is less than that of the bulk crystal and that the deformation of the bulk 
grains is purely elastic. 

- ~ 
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Figure 2-1. Perfect bicrystal subject to a shear stress parallel to the grain boundary. The two bulk grains 
undergo a shear strain and an offset develops between the two grains. If the shear stress is less 
that the theoretical shear strength of the grain boundary, the offset between the two grains will 
be a fraction of the lattice spacing. If the shear stress exceeds the theoretical shear strength of 
the grain boundary, grain boundary sliding will occur and the offset between the two grains 
may be many lattice spacings. 

This situation has been observed in experiments where the grain boundary shears but the bulk crystal 
is stable.[7] There are two contributions to the energy of the bicrystal as a function of shear stress. 
One is the strain energy of the two bulk grains. This energy will scale with the volume of the 
bicrystal. The other contribution is the energy associated with a displacement between the two grains 
at the grain boundary, i s .  the gamma surface energy. This energy will scale with the area of the grain 
boundary. As the shear stress on a perfect bicrystal is increased to the theoretical shear strength of 
the grain boundary, the boundary will undergo a discontinuous change in which some atomic bonds 
are broken and new atomic bonds are formed. In this manner the grain boundary can slide over 
distances of many lattice constants. 

An alternative approach to the study of grain boundary sliding is to calculate a gamma surface for the 
boundary. In general this requires some approach other than bicrystal shearing. In bicrystal shearing, 
a large discontinuous change in the grain boundary offset often occurs as the theoretical shear 
strength of the boundary is reached. Since the gamma surface plots the energy as a function of offset, 
such discontinuous change in the offset is undesirable. A further practical difficulty involves 
precisely defining and calculating the (possibly large) bulk strain energy and subtracting it from the 
total energy to accurately obtain the gamma surface energy. For these reasons some other method of 
calculating the gamma surface is desirable. 

In this paper we wish to emphasize the relationship between the calculation of gamma surfaces and 
current research in transition state finding. For details regarding a variety of methods used for 
transition state finding as well as a comparison of these methods we refer the reader to a recent 
review.[8] In this paper we will consider two common methods for transition state finding, the “drag” 
method and the nudged-elastic-band (NEB) method. We first discuss the “drag” method since 
bicrystal shearing calculations and calculation of gamma surfaces by rigid translation of the two 
halves of a bicrystal are special cases of the drag method. 



The drag method starts with an initial state relaxed to a local energy minimum. Based on some 
hypothesis regarding the path from this initial state through a transition state to a final state, a reaction 
coordinate is chosen. This reaction coordinate may be as simple as the x coordinate of a single atom, 
or may be a generalized reaction coordinate involving simultaneous motions of many atoms. Starting 
from the initial state, the reaction coordinate is incremented and fixed and the remaining coordinates 
of the system are allowed to relax. One hopes that this quasistatic calculation will allow the system to 
evolve smoothly from the initial state to the final state. For simple systems the drag method 
sometimes works perfectly and is very computationally efficient. However the drag method fails to 
find the correct transition state in many practical problems. One common mode of failure is directly 
analogous what happens in a typical bicrystal shearing calculation. The drag method frequently fails 
because as the reaction coordinate is incremented, the system "snaps" discontinuously from one side 
of the transition state to the other side of the transition state. In such cases, a plot of energy vs. 
reaction coordinate shows sharp drops in the energy as the reaction coordinate is increased. Several 
of the bicrystal shearing calculations in references 4 and 5 show such discontinuous changes in 
energy. These discontinuous changes in energy will occur during grain boundary sliding, however 
they are not part of the gamma surface. The magnitude of these discontinuous energy changes are 
likely to depend on computational factors such as the assumed mechanism for energy dissipation 
during sliding and the physical size of the two grains. 

The drag method can also fail by finding the "wrong" transition state. (By "wrong" we mean a 
transition state with an activation energy substantially higher than the transition state with the lowest 
activation energy). This will occur if an incorrect final state is chosen or if the assumed path from the 
initial state to the final state is wrong. A historic example of this problem is the case of adatom 
diffusion on a (100) surface[9] (see figure 2-2). Originally, it was assumed that the adatom hopped 
across the surface moving from one fourfold hollow site to another fourfold hollow site. Later, 
experimental and theoretical work proved that adatom diffusion on certain (100) surfaces involved 
the original adatom being incorporated into the surface while one of the surface atoms moved 
outward to become a new adatom. By this exchange process the adatom in the final state was found 
in a different fourfold hollow site than the adatom in the initial state. 

Similar problems can occur in grain boundary sliding and gamma surface calculations. For example, 
recent work on grain boundary slippage[lO] calculates a gamma surface by rigidly translating the 
atomic coordinates of all atoms on one side of the grain boundary, constraining all atoms in the 
directions parallel to the interface, and then relaxing the perpendicular components of all the atomic 
coordinates to a constrained energy minimum. Actually this is another example of calculating a 
transition state using the drag method. Here the assumption regarding the transition state is that the 
two grains translate rigidly past each other. The problem is that this assumption ignores possible 
complex cooperative motions at the grain boundary. The implicit assumption is that all of the atoms 
on one side of the boundary maintain their spatial relationship during grain boundary sliding. 
However the existence of complex cooperative atomic motions has been well documented in a 
number of computations.[4,11,12,13] Furthermore, the commonly observed phenomena of grain 
boundary migration perpendicular to the boundary during sliding[7] cannot occur if all of atoms on 
one side of the boundary move rigidly together as the grain boundary slides. Grain boundary 
migration requires that atoms start on one side of the grain boundary and move to the other side of the 
grain boundary during sliding. 



Initial State 
Exchange - 
4 
Hopping 

Final State 
Exchange 

Final State 
Two Hops 

Figure 2-2: Two different mechanisms for surface diffusion on a 100 surface. In the hopping mechanism 
the black adatom hops across the surface. In the exchange mechanism the black adatom is 
incorporated in the surface and the gray surface atom moves out of the surface to become an 
adatom. The final state after two hops is indistinguishable from the final state after exchange 
if the atoms are not labeled. The two final states are distinguishable if the atoms are labeled. 
The initial and final states for transition state finding by the nudged elastic band method must 
be labeled. As shown here, the labeling conveys considerable information regarding the 
reaction path. 



Since complex cooperative atomic motions and grain boundary migration often occur during grain 
boundary sliding, we suggest that such cooperative motions (if they occur) should be included in a 
useful definition of the gamma surface for grain boundaries. To avoid possible confusion with the 
customary definition of a gamma surface, we propose the term generalized gamma surface (GGS) for 
such cases. We now turn to the question of how to calculate relevant cross-sections of the GGS for a 
grain boundary. 

Drawing upon recent research in transition state finding, we will consider the nudged elastic band 
method.[l4] In order to explain this method, it is convenient to consider the problem of adatom 
diffusion on a (100) surface once again. Figure 2-2 shows two different final states, one reached by 
two hopping events, the other reached by a single exchange event. With the atoms labeled, these final 
states are clearly different. Without the labels, these final states are indistinguishable. The labeling 
conveys information regarding the reaction pathway. For the nudged elastic band method, labeled 
initial and final states must be known. A set of n states intermediate between the initial and final state 
are used for the NEB. Often these states are chosen by linear interpolation between the initial and 
final states. A fictitious energy is calculated by summing the energy of the n intermediate states plus 
a term which becomes larger as the difference between adjacent intermediate states increases. Often 
this term takes the form of a spring potential, thus the term elastic band. The method is refined by 
adjusting certain components of the forces in order to aid convergence (hence the term nudged) and 
the fictitious energy is minimized. This gives a set of states and energies along the transition path. 
The NEB avoids the discontinuous change in energy commonly occumng with drag methods. As 
should be clear from figure 2-2, it is essential to have properly chosen and labeled initial and final 
states in order to use the NEB. The NEB has several important advantages for the calculation of 
grain boundary GGS cross sections. The calculated intermediate states are free of long-range bulk 
strain. Thus there is no need to attempt to subtract the strain energy of the grains from the total 
energy in order to obtain the GGS. The NEB also avoids the discontinuities in energy associated with 
snapping from one configuration to another, often observed in transition state calculations using the 
drag method. 

In order to illustrate many of the issues discussed above, we now consider a specific example, the A1 
X 3 (1 13) twin boundary. This boundary has been studied extensively using experimental 
[15.16.17.18] and theoretical methods.[l5,17,19] TEM measurements, pair potentials, semiempirical 
potentials of the embedded atom form, and first principles calculations show that the (1 11) crystal 
planes on the two sides of this grain boundary are offset by about 33.7 A. The notation, "f", is used 
here to indicate that there are two degenerate stable configurations, which are symmetry equivalent, 
but have equal but opposite offsets (see figure 2-3a and 2-3b). 
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Figure 2-3a: 

rigure 2-3b: 

Initial stable configuration of the AE3 ( 1 15) grain boundary. The atoms on the right hand side of the 
boundary are labeled with numbers, the atoms on the let? hand side of the boundary are labeled with 
letters (the boundmy is defined bere by the offset of the 11 1 planes.) The gray scale indicates position 
perpendicular to the plane of the paper with lighter atoms being closer to the reader. The arrow in the 
figure shows the rigid translation of the right band grain corresponding to a standard gamma surface 
calculation. This translation is unphysical since there is a very large steric barrier to move atom "2" past 
atom "a". The actual mechanism of sliding is shown by the other portions of this figure. 

- 
The next stable contigumtion of the AE3 ( 11 2 ) grain boundary. The process of grain boundary 
sliding involves breaking the bond between atoms "5" and "3" and making a bond between atoms "2" 
and '"6". As a result of this sliding, atoms "2" and "3" move to the let? side of the grain boundary. 



Figure 2-3c: The next stable configuration of the boundary. In sliding from the configuration shown in figure 2-3b to this 
configuration, a bond is formed bemeen atoms "a" and "5" .  Grain boundary sliding causes migration of the grain 
boundary to the right. Since the grain boundary in figure 2-3c is equivalent (with a translation operation) to that in 
figure 2-3a, further sliding will result in further transfer of atoms across the grain boundary and further grain 
boundary migration to the right. 

It is instructive first to consider the initial and final atomic configurations corresponding to a 
calculation of the standard gamma surface using the standard approach (Le. rigid translation parallel 
to the grain boundary with relaxation perpendicular to the grain boundary). Both the initial and final 
states are represented by figure 2-3a. The vertical arrow indicates the path for rigid displacement of 
all of the numbered atoms by a coincidence site lattice (CSL) vector parallel to the boundary. Since 
this is the size of the unit cell in our calculations, the rigid displacement carries each atom on the right 
hand side to its image in the next unit cell. We have examined this kind of translation using 
semiempirical embedded atom calculations. The calculated barrier for this type of grain boundary 
sliding is extremely large due to the steric hindrance involved in moving atoms "2" and "a" past each 
other. Such a calculation is irrelevant to grain boundary sliding, because it assumes incorrect atomic 
motions and associated bond breaking and formation during sliding. 

The atomic configurations as a function of offset needed to calculate the GGS will be those 
that carry the system between two stable configurations with a relatively low activation 
energy. Finding the atomic configurations at saddles on the energy surface is the goal of 
transition-state-finding techniques. To use the NEB, labeled initial and final states are 
required. To obtain this information, we started with a stable initial state shown in figure 2- 
3a. We used bicrystal shearing (drag) to identify the atomic motions associated with grain 
boundary sliding, with the assumption that this procedure would allow correcting labeling of 
the atoms in the final state. Figure 2-3b shows the atomic identifications for a final state 
(offset +0.7A) relative to the initial state (offset -0.7A) shown in figure 2-3a. Figure 2-3c 
shows the atomic identifications for the next stable state (with offset +1.64A). We believe the 
initial and final configurations to be correct because the calculated energy barriers were very 
small, the atomic pathways from embedded atom and first-principles drag calculations were 
virtually identical, and structures similar to those calculated here have been observed in TEM 
microphotographs of partial grain boundary dislocations at this boundary.[20] 
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The process of sliding this grain boundary involves complex cooperative motions of the atoms in the 
vicinity of the grain boundary as shown in figure 2-3. While bicrystal shearing can provide a guide to 
the cooperative motions likely to occur, it is not a good way to calculate the generalized gamma 
surface. Instead we obtained cross sections of the GGS by using first principles calculations with the 
nudged elastic band method. We used the plane wave (E,,,= 250 eV) and ultrasoft 
pseudopotential[21] based code, VASP, developed by Kresse and Furthmuller.[22] The unit cell was 
a slab containing 48 atoms. The k-point sampling for the final calculations was 40x3~18; 
MethfesselPaxton smearing[23] of order 1 with a smearing width of 0.15eV was used. The effect of 
the energy cutoff, the k-point sampling, the use of the LDA and the GGA approximation, the 
smearing width, and number of states for the NEB were all investigated. Based on these tests, we 
believe that our calculated barriers for grain boundary sliding are correct within i2mJ/m2. 

Figure 2-4 shows the energy curve calculated by the elastic band method described above. The stable 
states at -0.7A offset, 0.7A offset, and 1 .HA offset correspond to the three atomic configurations 
shown in Figure 2-3a, 2-3b, and 2-3c respectively. The transition state at 0.OA has the (1 11) planes 
on both sides of the grain boundary aligned, hence the term symmetric. The transition state at 1.17A 
has the (1 11) planes on the right side of the boundary halfway between the (1 11) planes on the left 
side of the boundary, hence the term anti-symmetric. The maximum derivative of this curve gives the 
theoretical shear strength of this grain boundary. By theoretical we mean the shear strength of an 
ideal boundary without any dislocations. For this boundary the calculated theoretical shear strength is 
0.28 GPa. This is considerably less than the calculated theoretical shear strength of a perfect A1 
crystal in the [ 1 13ldirection on a (1 11) plane given as 1.85 GPa by Roundy et. a1.[6] Using elasticity 
theory with the published elastic constants of aluminum, the theoretical shear strength of the A1 3 
(1 13) grain boundary will be reached at an engineering shear strain of 0.014 for the bulk aluminum 
grains comprising the bicrystal shown in figure 2-1. 



*O E Anti- 1 
Symmetric -I 

Offset (A) 
Figure 2-4: Energy per unit area as a function of planar offset for AE3 (1 12)grain boundary. Energies were 

determined using nudged elastic band first principles calculation as described in text. The relevant 
stable configurations are shown in figure 3. The transition state configurations axe labeled symmetric 
for the state having the (1 11) planes on both sides of the grain boundary aligned and antisymmetic for 
the state having the (1 11) planes on one side of the grain boundary halfway between the (1 11) planes on 
the other si& of the boundary. The maximum derivative of this curve (found at about 0.94A offset) 
corresponds to the theoretical shear strength of this grain boundary. 

In conclusion we present the following picture of grain boundary sliding. We propose that the 
concept of the gamma surface should be retained, but that the definition of the gamma surface must 
be considered carefully for a given grain boundary since complex cooperative atomic motions may 
occur during sliding. In order to avoid confusion we suggest that the gamma surface incorporating 
cooperative atomic motions be called the generalized gamma surface (GGS). Once the GGS is 
calculated, the maximum gradient of this surface along a transition path corresponds to the theoretical 
shear strength of a grain boundary in that direction. Bulk elasticity can be used to determine the bulk 
strain associated with this shear strength. Below this bulk strain, the two perfect grains will undergo 
a shear strain and displacements at the grain boundary will be only a fraction of a lattice spacing (Le. 
no grain boundary sliding). At and above this bulk strain, grain boundary sliding will occur. Grain 
boundary sliding is likely to involve atomic motions similar to those comprising the GGS, but 
because of the energy release and dissipation which will occur in a discontinuous fashion at the 
boundary it will be relatively difficult to model. Finally, realistic calculations will need to consider 
the important role that grain boundary dislocations must play in grain boundary sliding. Although 
semiempirical calculations using the nudged elastic band method have been performed to address the 
issue of dislocation motion at grain boundaries first principles calculations of these phenomena 
remain well beyond our present computational capabilities. Hopefully it will be possible to use the 
GGS as defined and calculated here to model grain boundary dislocations and to better understand the 
role of grain boundary dislocations in allowing grain boundary sliding in real materials. 



Finally, we should mention that some calculations of grain boundary sliding in semiconductors have 
shown permanent damage propagating from the interface.[5] If permanent damage occurs during 
sliding, the generalized gamma surface would not be a appropriate way to model the sliding process. 
The concept of a gamma surface is only useful if an interface reforms its original structure 
periodically during sliding. 
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111. DETERMINATION OF FACET SIZE FOR ALUMINUM 
GRAIN BOUNDARIES 

High-energy grain boundaries (GBs) commonly undergo faceting to reduce their total energy. In 
many cases, the facets are observed to have uniform finite lengths, and the GB shows a sawtooth 
profile [l]. This self-organization of GB facets is important in determining mechanical properties of 
polycrystalline materials and in understanding the mechanisms of GB defaceting. 

A particularly well-studied GB is the aluminum twin boundary with average [I TO] orientation, which 
separates two grains related to each other by a 180" rotation about a shared [ll I] axis. The faceting of 
this GB has been previously studied experimentally using transmission electron microscopy (TEM) 
[2]. At room temperature, this boundary spontaneously facets into regular Z 3{112} type facets with 
lengths of about 100 nm. 

The equilibrium theory commonly invoked [ I ]  to explain the finite facets is based on the premise that 
there exists a balance between attractive and repulsive forces between facet junctions. This is similar 
to the theory of stress domains on surfaces [3], where the energy cost of forming facet junctions is 
balanced by strain energy relief. As discussed below, for the GB, the repulsive force is due to the 
presence of dislocations at the facet junctions while the attractive force is due to GB stress. [We 
emphasize that GB stress is an interfacial stress (units of force/distance) not a bulk stress (units of 
force/area)] . 

There appear to be two reasons why a quantitative validation of the accepted theoretical explanation 
is still lacking. Experimentally, there are very few measurements of GB stress. (Recent x-ray 
diffraction measurements [4] have been used to estimate high-angle GB stress in Pd nanocrystals, but 
this is not a routine measurement). Theoretically, an explicit analytical expression for the energy of 
the faceted GB has not yet been presented, and atomistic calculations have not yet been performed to 
address this issue. 

Here we combine continuum elasticity theory, density functional theory (DIT), and embedded-atom 
method (EAM) calculations to show that the conventional energetic argument cannot possibly 
account for the experimental observations of finite facet lengths for the above aluminum GB with 
average [l TO] orientation. To do this, we first use continuum elasticity calculations to show that 
stabilization of finite facets arises when the GB stress exceeds a threshold value; for stresses below 
the threshold value, the energy is minimized by facets of infinite length. Using DIT and EAM, we 
show that the actual stress for the aluminum GB is much smaller than the threshold value, causing the 
equilibrium facet length to tend to infinity. Finally, this is confirmed by EAM calculations of the total 
energy as a function of facet length for the aluminum bicrystal with multiple GB facets. 

We begin by discussing a planar GB to establish the key concepts of translation vector and GB stress. 
In general, GBs are characterized by a lower atomic density, which alters the equilibrium bond 
lengths compared to the bulk and induces a discontinuity in the spacing of lattice planes at the GB. 



The subset of lattice points forming a nearly continuous lattice across the GB is known as the 
coincident site lattice (CSL); the translation vector t measures the discontinuity in the CSL at the GB 
[ 5 ] .  The lower atomic density at the GB also changes equilibrium bond lengths in the plane of the 
GB; however, this relaxation is only partial because of the coupling to the bulk lattice. Hence, the GB 
is in a state of stress [I] ,  with a constant stress tensor component T in the GB plane. 

This description of the GB in terms of a translation vector and interfacial stress allows us to develop a 
simplified model of the faceted GB that is amenable to continuum elasticity calculations. Figure 3-1 
shows a schematic of the faceted GB. When two GBs meet at an angle to form a facet junction, the 
translation vectors on the right, La,, and on the left, are different, leading to a Burger's vector b = 
figh,- t,<, at the facet junction [ 5 ] .  At a junction between two facets, there is also a discontinuity of the 
stress tensor, leading to a line force p" = *2~sin@(x- xn)6(y- yn) j ,  where (x", yo) is the position of 
the facet junction, @ is the GB angle, and the top (bottom) sign corresponds to a valley (crest). With 
this model of the faceted GB, we can now calculate its energy as a function of facet length L using 
isotropic continuum elasticity. 

Figure3-1: Sketch of the GB used for the continuum elasticity calculations 
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The energy of the GB per unit area can be written as E = Ed.d - E,,,, - Ed.lf where Ed.d is the interaction 
energy between the dislocations, E,,,, is the interaction energy between the line forces, and E,.,, is the 
interaction energy between the dislocations and the line forces (all of which include self-interactions). 
The three components of the energy can be calculated from 

E,_p = - - z j fy ( r )uyp( r )  where a$=d or If, repeated indices imply summation, and A is the area 

of the unfaceted GB. Here, f y ( r )  and u;"(r)are the force and elastic displacement caused by the 
mth dislocation or line force, in the i = x, y or z direction. The displacements uyd(r)are given in 
standard elasticity references [6] while uy"(r)can be calculated from 

1 
2A rn," 

u;""(r) = jGi,(r  -r')py(r') 
where G&) is the Green's function for an infinite isotropic elastic medium [6]. 
From the expressions above, we find that the energy is of the form E(L ) =(A/L) 1nL + B L  with 

b2p2 -2(3-40)(1+o)r2sin2$+ 4zb~sinc)(l-20) 
A =  

4 ~ ~ ( 1 -  O)COS$ 

and B is a constant that is unimportant for our purposes. Here o is the Poisson ratio and p is the shear 
modulus. From the functional form E(L ) =(A/L) 1nL + B L ,  one can show that finite facets will be 
stabilized when A<O, leading to the condition 

z> bL(1- 20 + 2/7-60-402 = z *  
2(1+ 0)(3- 40)sinQ 

Hence, for finite facet lengths to be energetically favorable, the GB stress must exceed a threshold 
value z* . 
Based on the above theory, the conventional explanation for the finite facet size observed at the A1 
twin boundary with average [l TO]  orientation is that the GB stress z is larger than T*. However, no 
experimental or theoretical values for z or z* are available for this GB, making validation of the 
conventional model difficult. 

In order to investigate this issue, we used DFT and EAM to calculate 7 and z* for an A1 E3 (121) 
twin boundary. Our basic approach to obtain z is to use a planar GB representing a facet and 
calculate the stress of this GB. To obtain z*, we calculate the translation vector t of this GB, obtain b 

section and a long length in the [121] crystallographic direction. Periodic boundary conditions were 
used in all three directions. In order to ensure a completely stress-free bulk slab, the periodic lengths 
were relaxed in all three directions. Next, two equally spaced GBs were introduced with normals in 
the long [121] direction, as shown in Fig. 3-2. The slab periodic length, LIZ,, in the direction normal 
to the GBs was then relaxed to allow for the excess volume of the GBs and the differing atomic 
density in the vicinity of the GBs. The translational vector t was calculated from the new periodic 
length in this long direction. Finally, we found the desired component of the GB stress by calculating 
the total system energy as a function of the appropriate periodic length, L,,,, of the GB plane, while 
holding the other two periodic lengths fixed. A more complete description of these calculations 
follows. Voter-Chen potentials for aluminum were used for the EAM calculations [7]. Our density- 
functional [89] calculations 

- - t,@,, - tic,, and substitute in the equation above. We used a bulk slab with a small rectangular cross 
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Figure 3-2: Spacing of (121) CSL planes in A1 with two (121) twin boundaries calculated from DFT (open 
traingles) and EAM (solid circles). Simulation supercell (replicated four times in the [ lol l  direction) is 
shown below the figure, with black circles representing atoms forming the CSL. 

were performed with theVienna ab initio simulation package (VASP) [ 101, which uses a plane-wave 
basis for expansion of the electronic wave functions combined with the generalized gradient 
approximation [l 11 for the exchange-correlation energy. Ultrasoft pseudopotentials 112,131, including 
partial core corrections [ 141, were used to model the computationally expensive core-valence 
interaction. Brillouin zone sampling was performed using a Monkhorst-Pack grid [15], and electronic 
occupancies were determined according to a Methfessel-Paxton scheme [16] with an energy smearing 
of 0.15 eV. The number of k points was chosen to ensure that the elastic constants were converged to 
within 10% of the experimental values for bulk Al. This required the use of a very dense k grid (40 x 
20 x 2), resulting in 400 irreducible k points. The plane-wave cutoff energy was set to 180 eV, which 
was sufficient to converge total energies to within 1-2 mevlatom. 
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For our DFT calculations, we started with a 72 atom GB-free bulk A1 slab with periodic lengths L,,,, 
L,,,, and L,,, in the three orthogonal slab directions. After careful relaxation of these periodic lengths 
to better than 0.1% tolerance, we found L,,, =2.864 8, ,L,,, = 7.005 8, ,and L,,, = 59.376 8, . In 
order to form two GBs, the central section of the unit cell was subjected to a reflection operation 
about a [ 11  11 mirror plane and two atoms were removed to create a 70-atom slab (shown relaxed and 
replicated in Fig. 3-2). The lengths L,,, and L, , ,  were fixed at the bulk stress-free values and L,,, was 
varied to minimize the total energy, thus allowing for the lower atomic density and the excess volume 
of the GB. Similar methods were used for the EAM calculations. 

Figure 3-2 shows the spacing of the CSL planes in the presence of the GBs. Clearly, the CSL is 
contracted at the GBs compared to the bulk system; as explained above, the contraction occurs 
because the atomic density is lower at the GBs, leading to a decrease in the average coordination of 
each atom and slightly shorter bonds. As Fig. 3-2 clearly shows, we obtain excellent agreement 
between the DFT and EAM calculations, with a total contraction of the simulation cell in the (121) 
direction of 0.54 8, per GB for DFT and 0.51 8, for EAM [17]. Thus, taking the DFT result, the 
magnitude of the Burger’s vector that enters in Eq. ( 5 )  is 0.54 8, . Our calculations are in good 
agreement with experiment [ 5 ]  and previous calculations [5,18,19]. 

With this value for the Burger’s vector and published values for the elastic constants of aluminum 
[20], we find from the above equation that, for this particular GB, ~ * = 9 9  meV/A*. The remaining 
question is whether the actual stress T is above or below this value. For the calculation of the GB 
stress, we used the slab from the previous calculation (shown in Fig. 3-2). L,,, and L,,, were fixed at 
their bulk stress-free values and the total energy was calculated as a function of L,,,. The result of this 
calculation is plotted in Fig. 3-3, where the energy reference has been adjusted so the minimum of 
energy is at zero. As can be seen in the figure, the energy minimum is displaced from the bulk stress- 
free value because the GB stress has the effect of contracting the slab slightly in the [loll direction. 
The GB stress is given by .=-A 1 aE 

(The partial derivative is evaluated at the periodic length of the stress-free hulk slab). Using this 
method, we calculate a grain boundary stress of 21 = meV/A2 using DFT and 29 meV/8,* using EAM. 
Given the uncertainties in the DFT and EAM calculations, these values agree within anticipated 
errors. The important point here is that both of these stresses are much smaller than the value 2*=99 
meV/8,’ calculated above. This large difference between the actual stress T and the threshold stress T* 
can be further highlighted by comparing the DFT and EAM curves of Fig. 3-3 with a continuum 
elasticity calculation for a slab with two GBs having the threshold stress 2*=99 meV/A2. Within 
continuum elasticity, the energy to deform the bulk slab (without the GB) is 

2Llll aLIm LlOi’2864” 

where V, is the undeformed slab volume and the C, are the elastic constants. . Adding the two GBs 
costs an additional energy, E,, = 2L,,,z*A L,,, The energy E,,, + E,, is plotted as a dotted line in 
Fig. 3-3. 
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Figure 3-3: Energy of the grain boundary of figure 3-2 as a function of the change in Llol from its bulk stress-free 
value, calculated from DFT (solid circles) and EAM (open squares). The solid and dashed lines are 
quadratic fits. The dotted line is the energy calculated from continuum elasticity using a GB stress of 
e. 

Comparison of the DFT, EAM, and continuum elasticity curves shows agreement in the curvature, 
demonstrating that the atomistic calculations give the correct values for the bulk elastic constants. 
More importantly, the slope of the atomistic curves and the continuum elasticity curve are very 
different at AL,,, =O. This reemphasizes that T calculated from the atomistic calculations is much 
smaller than T*, demonstrating clearly that finite facets are not stabilized by GB stress at this grain 
boundary. 
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Figure 3-4  L I& intation faceted 
into %3{112} type boundaries, as a function of facet length. Thepoints are fit by the function 
(A/L)lnL+B/L. The insets show schematically the geometries used for some of the calculated 
points. 

This conclusion can be directly verified by E M  calculations of the energy of a faceted A1 boundary 
as a function of facet size using a geometry that replicates the experimental TEM observations. Figure 
3-4 shows a schematic representation of a portion of this geometry. We modeled a 397 8, thick slab 
with two free [ 1101 surfaces and a single GB with average [ 1101 orientation in the center. The 
periodic boundary lengths in the [lll] and [112] directions were 7.01 and 158.7 8, ,respectively. 
Thfese boundary conditions were selected to allow modeling fairly long facets while avoiding 
interference of the GB strain field with the slab surface. For this bicrystal, we calculated the total 
relaxed energy with n facets of length 183.3 8, /n (n - 2,4 ,8 ,16 ,  and 32). All of these configurations 
contained the same number of atoms, the same area of free surface, and the same total GB area; thus, 
the changes in total energy directly reflect the GB energy as a function of facet length. Figure 3-4 
shows the calculated energy as a function of facet length L. The plotted points are well fit by a curve 
of the form (An) ln-L+ B L  Least squares fitting to the total EAM energies gives A = 4.96 meV/8,* 
and B meV/A*. Since A is positive, there is no local minimum in the energy and no finite equilibrium 
facet length. The curve fit confirms what the plotted points suggest: The equilibrium GB facet length 
for the EAM calculation tends toward infinity, confirming the predictions from the continuum 
elasticity calculation. As a final check of the above calculations and derivation, we can compare the 
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values of A calculated from the EAM and the prediction from the elasticity calculation. From Eq. (4) 
and the values forb and T from EAM, we find A = 6.5 meV= -A in good agreement with the EAM 
result A = 4.96 meV/A*. This is a strong check of the EAM calculations and of the continuum 
elasticity derivation. The work presented here shows that finite facets are not equilibrium features of 
this GB.While the obvious alternative is kinetics, the actual atomistic kinetic mechanism remains to 
be explored, as does the generalization of the conclusion to other GBs. 
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IV. OVERLAYER STRAIN RELIEF ON SURFACES WITH 
SQUARE SYMMETRY: 

Phase Diagram for 2D Frenkel-Kontorova Model 

Virtually every surface, with or without a heteroepitaxial overlayer, is strained. For clean surfaces, 
the coordination of surface atoms is lower than bulk atoms, thus the surface atoms prefer a different 
interatomic spacing from the bulk atoms. For overlayers, the lattice constants of the overlayer and 
the substrate are not perfectly matched, Since the mechanisms of strain relief determine the structure 
of clean surfaces and overlayers, it is essential to understand these mechanisms in order to predict and 
control such structures. 

In this paper, I consider the structure of overlayers on surfaces with square symmetry. 
Experimentally a great variety of structures have been observed for overlayers on (100) surfaces. 
These include pseudomorphic structures, pseudomorphic structures with intersecting rectangular 
dislocation arrays[ 11, clock-rotated structures[2], hexagonal overlayers of various periodicities[3] and 
rotated hexagonal overlayers.[4] More recently, nonintersecting dislocation lines have been observed 
for Cu deposited on Ni(100).[5] Ideally, one would like to have a single theory which can explain in a 
systematic manner the wide range of structures observed for overlayer systems on (100) surfaces. 
This has proved an elusive goal. 

There are a number of theoretical approaches that have been applied to this problem. The classic 
work in this area is by Frank and Van der Merwe (FVM).[6] In their continuum approach they 
consider the problem as two superimposed one-dimensional problems. Their theory predicts 
intersecting dislocations forming an approximately square grid. It has been extremely successful in 
addressing issues of strained layer growth on Si(100) for example. Their theory cannot however treat 
situations in which a hexagonal film forms on a square substrate. Other work has addressed the 
reconstruction of fcc metal 100 surfaces, specifically Au, F’t and Ir to form hexagonal overlayers, 
sometimes rotated with respect to the substrate.[7] Finally there is considerable work using molecular 
dynamics[8] and/or Monte Carlo techniques[9] to study the structure of films grown on (100) 
surfaces. 

In this paper I consider the phase diagram for a model of an overlayer on a square substrate as a 
function of the lattice mismatch between substrate and overlayer. The most important feature of this 
model is that it includes both hexagonal and square symmetry overlayers and the transition between 
these two symmetries. In contrast to molecular dynamics and Monte Carlo techniques, the energetics 
of defect free single phases at OK are calculated and compared. This 2D Frenkel Kontorova model is 
of fundamental theoretical interest. In addition, the solutions are useful because they suggest phases 
which should be tested in detailed atomistic calculations of strain relief. As an example of this 
application, first-principles calculations performed here show that a nickel (100) surface subjected to 
a strain parallel to the surface reconstructs from a bulk termination to a clock rotation for biaxial 
compressive strain exceeding 2.4%. 
For a 2D Frenkel Kontorova model the adatoms move in a substrate potential: 
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a 
Vodetermines the strength of the substrate potential and a is the lattice constant for the 2D square 
surface lattice. For the numerical study reported here, Vowas chosen as 0.8 eV corresponding to a 
fourfold hollow energy of 0.0 eV, a bridge site energy of 0.4 eV and an on-top site energy of 0.8 eV. 
These are plausible values for a (100) fcc metal surface. The lattice spacing, a, was set equal to 2.49 
A, the nearest neighbor spacing of bulk nickel. 

In a ID Frenkel-Kontorova model, nearest neighbor atoms are connected by springs. Since the atoms 
are in a linear chain, each atom has one nearest neighbor on each side. In a 2D Frenkel-Kontorova 
model, the definition of nearest neighbors can be problematic, and it is customary to avoid ambiguity 
by using a short range adatom-adatom potential with a binding energy, E. Leonard Jones and Morse 
potentials are common choices. In order to facilitate comparison with analytical calculations, 
including the work of FVM, I chose instead a piecewise continuous function made of two parabolic 
segments. This potential is shown in figure 1. Over most of its range ( r a t )  it has the form V(r) = - 
E + (k/2)(r-rJ2. The minimum of this potential is at r = r,, and the binding energy is E. In order to 
continue this function to zero, it was joined to an inverted parabola for the remainder of its range, 
V(r) = -(W2)(r-r2)* for (r,<r<r2). By matching V(r) and its derivative at r l ,  the values of rl and r2 are 
determined. The range of the potential is r2 = ro + 2,@. 

The value for E was initially chosen to fit the cohesive energy of nickel and the value of k was chosen 
based on a Leonard Jones potential with the binding energy and lattice constant of nickel. This 
choice (&=0.7eV and k=10eV/A2) gave hexagonal overlayers for all values of the overlayer misfit. In 
order to investigate the competition between pseudomorphic and hexagonal overlayers commonly 
seem for metal surfaces and overlayers, I chose instead E = 0.35eV and k=lOeV/ A’. All of the results 
reported here were obtained with these parameters. 



2 2.2 2.4 2.6 2.8 3 

Figure 4-1: Adatom-adatom potential used in these calculations. The potential has a binding energy, E, a spring 
constant, k, and is parabolic for r a I ,  For rx, the potential is an inverted parabola, out to a cutoff radius 
at r,. 

The total energy of a system of adatoms adsorbed on the surface is the sum of the substrate energy for 
all of the adatoms, and the adatom energy for all of the adatom-adatom bonds: 

E,,,, = v,"Jq + cvdl t - 5 1) 12 
j i+ j  j 

The energy per atom, E, is this energy divided by the number of adatoms. In order to construct the 
zero temperature phase diagram for this model, one must find single phase arrangements of atoms 
which fill two-dimensional space (with periodic boundary conditions) and which minimize E. I 
started with a variety of initial atomic configurations (to be described), picked a value of the lattice 
mismatch, A= (ro-a)/a, and used the conjugate gradient technique to minimize the total energy as a 
function of the atomic positions. The calculations were limited to mismatchs in the range -0.2 < A  < 
0.2. Atomic arrangements resulting from the minimization with more than one phase or with defects 
were rejected. By repeating this procedure for a complete set of reasonable initial trial 
configurations, the global minimum energy configuration was found for various values of the 
mismatch, A. In practice, the key issue was to identify a complete set of reasonable initial trial 
configurations. It was hard to be sure that this set was complete. I was guided in this task by 
experimental results showing configurations with fourfold coordination to other adatoms (rectangular 
packing) and configurations with sixfold coordination to other adatoms (hexagonal packing). These 
configurations were placed on the substrate with periodic boundary conditions and dimension 40a by 
40a. 

We first consider phases generated starting with rectangular packing. The initial configurations were 
generated using lattice vectors 6 = (Ma/  n)d and i! = (Ma/m)Y, where d and are unit vectors in 
the x and y directions. Most of the phases generated starting with rectangular packing correspond to 
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the phases predicted by Frank and van der Merwe (FVM).[6] For n=m<40, a square dislocation array 
with light-wall dislocations is formed (see figure 2a). For n=m>40, a square dislocation array with 
heavy-wall dislocations is formed. In agreement with the FVM solution, the lowest energy solutions 
are square dislocation arrays (n=m). For n=m=40, a pseudomorphic phase with all of the adatoms in 
fourfold hollow sites can be produced. However the ability to simultaneously relax atomic 
coordinates in two dimensions allows another strain relief mechanism which is not possible in the 
FVM theory. This "clock-rotated'' phase, shown in figure 2b, has been seen experimentally for 
various adsorbates on (100) surfaces. For our parameters it was stable for adatom bond lengths in the 

I range between about 1.02a and 1.08a. 

I I 

Figure 4-2: Typical structures formed by minimizing the energy of initial structures with rectangular packing. Fig. 
4-2a is the square dislocation pattern predicted by Frank and van der Menve. The dislocations are 
indicated by the heavy lines. Fig. 4-2b is the clock rotation. Units of four adatoms are rotated 
clockwise and expanded slightly relative to the pseudomorphic structure. This increases the length of 
the bonds within the unit of four atoms. It also brings some atoms within a neighboring unit closer. 

We next consider phases generated starting with hexagonal packing. The initial configurations were 
generated using lattice vectors 6 = (Ma/  n)d and E = (20a/n)d+ ( m a /  m)f , where d and y' are unit 
vectors in the x and y directions respectively. This choice of lattice vectors allows the approximately 
hexagonal array to fit perfectly on the square substrate. The extent to which the arrays are. distorted 
from perfect hexagonal packing is determined by the choice of n and m. (An approximately 
hexagonal array would have m 2&1/3  .) For positive mismatch, phases with m=40 were favored 
(see figure 3a). I will call these phases registered. For these registered phases all the adatoms lie 
along parallel lines (horizontal in fig. 3a) containing fourfold hollow and bridge sites. All of the 
adatoms avoid on-top sites, and are at least a distance of a/2 from the on-top sites. This strong 
registry to the substrate allows strain relief while avoiding the energetically costly on-top sites. For 
negative mismatch, phases with m>40 were favored, some adatoms were near on-top sites, and the 
phase was called unregistered (see figure 3b). 



Phases generated with hexagonal packing rotated by small angles relative to the substrate were also 
considered. The energies of the rotated 

Figure 4-3: Typical structures formed by minimizing the energy o f  initial smcmes with hexagonal packing. Fig. 
4-3a i s  n hexagonal shucture formed when the o\,erlayer atoms arc larger than the substrate aioms 
(A=-O.12). T h i s  smcture is called registered because the rons of adatoms remain over the fourfold 
hollow, and bridge sites o f  the substrate Fig. 4-3b i s  a hexagonal structure formed when the ovcrlayer 
atoms are smaller than the substrate atoms (here A=-O.16). The structure shou n in 4-3b w,ill be called 
unregistered because some o f  the adatoms Iic near on-top sites. 

overlayers were very slightly larger than the energies of unrotated overlayers shown in figure 3. This 
is in accord with the theoretical predictions from an analytical FK model treating only hexagonal 
layers.[lO] As discussed in reference 10, it appears that rotated overlayers can only be explained in a 
2D FK model by allowing higher order terms in the substrate potential. 

Once the energy per atom, E, has been calculated as a function of the misfit, A, it is straightforward to 
determine the zero temperature phase diagram by plotting E vs. A for the various phases. Because 
there are so many possible phases, this data is presented in two different plots in figure 4. The upper 
plot in figure 4 includes only the pseudomorphic and square dislocation phases. Since this plot 
includes only those phases allowed in the continuum theory of FVM, its predictions agree with that 
theory. The structure is pseudomorphic for IA1<0.075. For larger misfits, square arrays of 
dislocations form with dislocation spacing decreasing as the misfit increases in agreement with FVM. 

In the lower plot of figure 4, E vs. A is plotted for the unregistered hexagonal, pseudomorphic, clock- 
rotated, and registered hexagonal phases. Comparison with the upper plot shows clearly that the 
clock-rotated and hexagonal phases are lower in energy than square arrays of dislocations over the 
whole misfit range. The model predicts unregistered hexagonal phases for -0.2 < A < -0.025, the 
pseudomorphic phase for -0.025 < A < 0.025, the clock-rotated phase for 0.025 < A < 0.085, and 
registered hexagonal phases for 0.085 < A  < 0.2. 
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Figure 4: Plot of energy vs. misfit parameter for various possible structures. The upper plot shows only the 

phases permitted by the FVM model, i.e. pseudomorphic and square dislocation arrays. The lower plot 
shows the phases which actually have the lowest energy for this model, i.e. unregistered hexagonal, 
pseudomorphic, clock-rotated, and registered hexagonal. For the registered hexagonal, the phases 
plotted as light parabolas have n 4 0 ,  and m=39 (not stable), 38, 37,36,35,34, and 33 respectively. 
The n 4 0 ,  m=36 phase is identical to the c( 10x2) reconstruction seen for Ag on Cu(100). 



The phase diagram will of course depend upon the values chosen for the model parameters. Since the 
driving force for formation of hexagonal layers is the increase in the adatom-adatom coordination, a 
fourfold coordinated structure is favored for smaller values of the adatom-adatom binding energy, E ,  
whereas a sixfold coordinated structure is favored for larger values of E. The main effect of varying 
the adatom-adatom potential was found to be shifting the relative energies of the fourfold coordinated 
and sixfold coordinated structures. Experimentally, metal on metal systems tend to show 
pseudomorphic, clock and hexagonal structures. I chose the adatom-adatom potential to favor this 
range of structures. 

This model provides a simple and mathematically attractive model of strain relief. There are a 
number of experimental systems which exhibit phases identical to those predicted by this model. 
Clean Pt(lOO), Au(100) and Ir(100) surfaces all exhibit unregistered hexagonal reconstructions.[l 11 
Ni(100 surfaces form a clock-rotated phase upon absorption of one half a monolayer of carbon[2] or 
nitrogen.[ 121 Silver atoms absorbed on Ni( 100) or Cu( 100) exhibit registered hexagonal overlayers 
with ~(2x8)  and ~(2x10) structures respectively in excellent agreement with this model.[l3] 

The simple model presented here is intended as a qualitative theory for overlayer strain relief. 
However it can also be very useful in suggesting structures likely to be found experimentally or in 
highly-accurate first-principles calculations. For example, one might suspect based on this model that 
a clock-rotated surface structure should be formed on an fcc (100) metal surface if the bulk sample is 
subjected to a biaxial compressive strain parallel to the surface. This would be expected because the 
compressive strain would reduce the bulk lattice constant in the directions parallel to the surface. 
Thus the effective misfit, A, between the surface atoms and the bulk would become positive. I have 
checked this prediction using the first-principles ultrasoft pseudopotential code, VASP. The initial 
system was a five-layer Ni slab with two free (100) surfaces. The total number of atoms in the unit 
cell was 20. Figure 5 shows the total energy of the 20 atom system for the pseudomorphic and the 
clock-rotated phases plotted as a function of the biaxial compressive strain. This calculation indicates 
that a nickel (100) surface will reconstruct to the clock-rotated phase for compressive strains 
exceeding 2.5%. This quantitative LDA calculation is in agreement with the qualitative behavior 
predicted by the simple 2D FK model. However, the quantitative agreement in the strain at which 
surface reconstruction occurs is totally fortuitous, depending upon the choice of parameters in the FK 
model. The success of the model in predicting this previously unexpected reconstruction under 
biaxial strain suggests that it will be useful in predicting other previously unobserved strain relief 
phenomena for overlayers on square substrates. 

2D Frenkel-Kontorova models have previously been used with great success to model overlayer 
structures on surfaces with hexagonal symmetry.[ 141 Strain relief mechanisms for surfaces with 
square symmetry are quite different from hexagonal surfaces, yet we see here that the 2D Frenkel- 
Kontorova model provides an suitable model for many of the observed overlayer reconstructions. 
Parameters for Frenkel-Kontorova models can be derived from f i s t  principles calculations providing 
an important method of simulating overlayer structures in cases where the unit cell is much too large 
for a complete f i i t  principles calculations. 
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Figure 4-5: First principles LDA calculation for total energy of 5 layer nickel slab subjected to biaxial compressive 
strain. As the substrate is compressed, the effective misfit between the bulk atoms with their strained 
IaItice constant and the surface layers increases. At about 2.5% strain, the surface layer reconstructs to a 
clock-rotated structure. 
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