Experiments and evaluation of chaotic behavior of dripping waterin fracture models

PDF Version Also Available for Download.

Description

Laboratory experiments of water seepage in smooth and rough-walled, inclined fracture models were performed and the monitoring data analyzed for evidence of chaos. One fracture model consisted of smooth, parallel glass plates separated by 0.36 mm. The second model was made with textured glass plates. The fracture model was inclined 60{sup o} from the horizontal. Water was delivered to the fracture model through a capillary tube in contact with the top fracture edge at constant flow rates. Three types of capillary tubes were used: (1) a stainless steel blunt needle of 0.18 mm ID for flow rates of 0.25 to ... continued below

Creation Information

Geller, Jil T.; Borglin, Sharon E. & Faybishenko, Boris A. June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Laboratory experiments of water seepage in smooth and rough-walled, inclined fracture models were performed and the monitoring data analyzed for evidence of chaos. One fracture model consisted of smooth, parallel glass plates separated by 0.36 mm. The second model was made with textured glass plates. The fracture model was inclined 60{sup o} from the horizontal. Water was delivered to the fracture model through a capillary tube in contact with the top fracture edge at constant flow rates. Three types of capillary tubes were used: (1) a stainless steel blunt needle of 0.18 mm ID for flow rates of 0.25 to 4 mL/hr, (2) a nylon tube of 0.8 mm ID for flow rates of 0.25 to 10 mL/hr, and (3) a glass tube of 0.75 mm ID for flow rates of 0.5 to 20 mL/hr. Liquid pressure was monitored upstream of the capillary tube. Visual observations showed that water seeped through the fracture models in discrete channels that underwent cycles of snapping and reforming. Observations also showed that liquid segments, or drips, detached at different points along the water channel. The measured liquid pressure responded to the growth and detachment of drips. Separate experiments were carried out to measure pressure time-trends for dripping into open air to compare these data with those obtained in fracture models. Analysis of the pressure time-trends included determination of the time lag from the minimum of the average mutual information function, the local and global embedding dimensions, Lyapunov exponents and the Lyapunov dimension, the Hurst exponent and the entropy as a function of the embedding dimension for each data set. Most of the water pressure data contain oscillations exhibiting chaotic behavior, with local embedding dimensions ranging from 3 to 10, and global embedding dimensions one to two units higher. The higher dimensionality of some of the data sets indicates either the presence of high-dimensional chaos or a significant random component. It was determined that the flow rate, which affects seepage behavior and is reflected in the pressure measurements, is inversely correlated with the Hurst exponent. This supports the hypothesis that at higher flow rates, the random component of seepage behavior (as represented by liquid pressure) increases. However, there was no simple, consistent correlation between the trends for the other diagnostic parameters of chaos and flow rate. Three-dimensional plots of selected data sets in pseudo-phase space exhibit definite structures with some scattering of data points on the attractor. All the analyses confirm that the pressure time trends that describe flow behavior are mostly characterized by low-dimensional, deterministic chaotic dynamics with some random component.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--48394
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/900684 | External Link
  • Office of Scientific & Technical Information Report Number: 900684
  • Archival Resource Key: ark:/67531/metadc888060

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 29, 2016, 2:42 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Geller, Jil T.; Borglin, Sharon E. & Faybishenko, Boris A. Experiments and evaluation of chaotic behavior of dripping waterin fracture models, report, June 1, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc888060/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.