Transition crossing simulation at the Fermilab Booster

PDF Version Also Available for Download.

Description

The demand in high intensity and low emittance of the beam extracted from the Booster requires a better control over the momentum spread growth and bunch length shortening at transition crossing, in order to prevent beam loss and coupled bunch instability. Since the transition crossing involves both longitudinal and transverse dynamics, the recently modified 3-D STRUCT code provides an opportunity to numerically investigate the different transition crossing schemes in the machine environment, and apply the results of simulation to minimize the beam loss and emittance growth operationally.

Physical Description

3 pages

Creation Information

Yang, X.; Drozhdin, A.I.; Pellico, W. & /Fermilab June 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The demand in high intensity and low emittance of the beam extracted from the Booster requires a better control over the momentum spread growth and bunch length shortening at transition crossing, in order to prevent beam loss and coupled bunch instability. Since the transition crossing involves both longitudinal and transverse dynamics, the recently modified 3-D STRUCT code provides an opportunity to numerically investigate the different transition crossing schemes in the machine environment, and apply the results of simulation to minimize the beam loss and emittance growth operationally.

Physical Description

3 pages

Source

  • Presented at Particle Accelerator Conference (PAC 07), Albuquerque, New Mexico, 25-29 Jun 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-07-252-AD
  • Grant Number: AC02-07CH11359
  • DOI: 10.2172/901694 | External Link
  • Office of Scientific & Technical Information Report Number: 917875
  • Archival Resource Key: ark:/67531/metadc887990

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 10:29 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yang, X.; Drozhdin, A.I.; Pellico, W. & /Fermilab. Transition crossing simulation at the Fermilab Booster, article, June 1, 2007; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc887990/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.