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Abstract

This survey defines the problem of anomaly detection and provides an overview
of existing methods. The methods are categorized into two general classes:gen-
erativeanddiscriminative. A generative approach involves building a model that
represents the joint distribution of the input features andthe output labels of sys-
tem behavior (e.g., normal or anomalous) then applies the model to formulate a
decision rule for detecting anomalies. On the other hand, a discriminative ap-
proach aims directly to find the decision rule, with the smallest error rate, that
distinguishes between normal and anomalous behavior. For each approach, we
will give an overview of popular techniques and provide references to state-of-
the-art applications.

1 Introduction

The goal of anomaly detection is to identify the onset of faulty or novel system behavior, to char-
acterize the nature of such behavior (i.e., benign or malicious) and to propose possible causes or
correlated factors that may be of use to the analyst who is diagnosing the system. In many practical
applications, it is especially important to distinguish between benign faults (due to unintentional
causes, such as natural wear-and-tear of physical components) and malicious faults (due to inten-
tional cases, such as illegitimate intrusions into a securenetwork system), since the nature of the
fault directly affects the type of recovery actions to be initiated by the analyst. In general, anomaly
detection is a statistical learning problem, in which the task is to train a classifier with knowledge of
normalbehavior to distinguish between abnormal oranomalousbehavior.

Anomaly detection is a broad research topic that has inspired a long history of innovation from dif-
ferent research communities (e.g., signal processing, machine learning, statistics). Most algorithms
that stemmed from this work have either been custom-tailored to specific domains or have restric-
tive assumptions. In general, it has been realized in practice that anomaly detection is an extremely
challenging task, where different paradigms of detection schemes have been shown to perform well
on different data. Thus, it is difficult and almost impossible to choose one single method to address
the myriad of challenges faced by general real-world applications.

The difficulty of these challenges is strongly correlated with the statistical properties of the data, as
well as the amount of information that is available about thedomain. In particular, the applicability
of a particular approach will depend on the following:

• The availability of domain knowledge about the system’s behavior under normal and
anomalous operating modes, i.e., is there enough information to build models of the system
under different modes?

• The availability of data and whether they are labelled according to the corresponding modes
of system behavior, i.e., is there enough data to learn the adequate models in the dearth of
domain knowledge?
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• The applicability of domain knowledge over time, i.e., how reliable is this knowledge and
how stringent is the need to update our models over time?

Depending on the various degrees of available data and domain-specific knowledge, different meth-
ods have been applied to tackle the problem of anomaly detection. These methods are categorized
into two main classes:discriminativeapproaches andgenerativeapproaches.

In discriminative methods, the focus is to optimize a decision rule that classifies data into categories
that correspond to normal or abnormal modes of system behavior. No effort is made in trying
to model the causal relationships between the data and the underlying system process. On the
other hand, the focus of generative methodsis to learn a model that describes the system process.
With a generative model, one can interpret the system and understand the causality between the
hidden system state and its observed behavior. This is in contrast to discriminative methods, which
treat the underlying system as a black box. However, since parameters for generative models are
often chosen to maximize the likelihood of the data, these models will generally be less optimized
for the classification task (of anomaly detection) at hand. Nonetheless, depending on the specific
application, one approach may be better suited to a particular domain, as we will see in later sections.

In Section 3, we lay the mathematical foundations for the theory behind discriminative and gen-
erative classifiers, and describe their qualitative differences. In Section 4, we explain a popular
subset of methods that fall under the category of discriminative approaches and provide references
for interesting applications that utilize such methods. InSection 5, we do the same for generative
approaches. Finally, we summarize the tradeoffs between the two approaches and provide references
to hybridization attempts in Section 6. For the rest of this survey, the termsanomaly detectionand
novelty detectionwill be used interchangeably.

2 Notation

In this section, we introduce the notation that will be used in our discourse. We use uppercase letters
to denote random variables and lowercase letters to denote their instantiations. For example, given
a binary variableX ∈ {0, 1},X can either take on the valuex = 0 or x = 1.

We use boldface when referring to a collection or set of similar items. For example, givend variables
{X1, ..., Xd}, the collection of these variables is referred to asX = {X1, ..., Xd}. We also use
boldface for vectors, as vectors are usually the collectionof more than one element.

In general, superscripts are often used to index a specific data point from a collection of data points.
For example, a set of training data may consist ofN data vectors,{x(1), ...,x(N)}. Thenth data

vector is denoted byx(n) and itsith element is denoted byx(n)
i . Note thatx(n)

i is not represented
by a boldface letter because it is a single element instead ofa vector.

In addition, we usep(·) to denote probability densities andP (·) to denote probability mass functions.

3 Discriminative vs. Generative

Anomaly detection is closely related to classification[Steinwartet al., 2005]. In fact, one can
define the problem of anomaly detection as the act of classifying data into the various categories
that correspond to normal and abnormal modes of system behavior. As a result, we will examine
the differences between discriminative and generative approaches in terms of their classification
capabilities. As such, we will lay the mathematical theory of these two approaches in the setting of
supervised classification.

In supervised classification, the input features is represented by the random vectorX and its output
label is represented by the random variableC. WhileX can be real- or discrete-valued,C is assumed
to be discrete and takes on finite values that correspond to the different classes.X andC are derived
from an unknown probability distributionp(X, C). Generative classification takes the approach of
approximatingp(X, C) using a parametric family of models, then applying Bayes’ rule to compute
the class-conditional distributionsP (C|X). Each new data vectorx is then assigned to the most
probable labelc in respect toP (C|X). The complementary approach of discriminative classifica-
tion is to directly find a classification rule with the smallest error rate. In other words, this approach

2



learnsP (C|X) from the data without first estimating the joint distribution p(X, C). The obvious
difference with the discriminative approach is that it makes no assumption about the input distribu-
tion p(X), while the generative approach makes indirect assumption aboutX in its computation of
the joint distributionp(X, C) before computing the conditional distributionP (C|X). Put another
way, the key difference is as follows: discriminative approaches applyP (C = k|X = x) to directly
discriminatethe valuek for any instancex, whilegenerativeapproaches estimateP (C = k|X = x)
fromP (C = k) andp(X = x|C = k), the latter of which can be used togeneraterandom instances
x conditioned on a target labelk.

We now examine more closely the mathematical relationship between discriminative and generative
classifiers and we follow the discourse from[Bouchard and Triggs, 2004]. Assume that the training
data,{x(n), c(n)}Nn=1 wherex(n) ∈ R

d and c(n) ∈ {1, ...,K}, are independent and identically
distributed according to some unknown distributionp(X, C). The goal is to computeP (C|X),
which would be used to devise a classification rule that categorizes new data with the least amount
of error. To do so, one must compute the class-conditional probabilityP (C = k|X) for each class
k. For each classk, p(X|C = k) is modelled by some distributionfk with parametersθk, and
P (C = k) is parametrized by the prior probabilitypk. Altogether, the parameters for the joint
distribution areΘ = {p1, ..., pK , θ1, ..., θK}. AssumingΘ is known, the classification task boils
down to assigning the new data vectorx to the classk that maximizes

PΘ(C = k|X = x) =
pkfk(x; θk)

∑K
c=1 pcfc(x; θc)

(1)

Both generative and discriminative methodologies take this same high-level approach. Their depar-
ture from one another lies in the estimation ofΘ.

Given data{x(n), c(n)}Nn=1, the parameters of a generative classifier are chosen to maximize the
likelihood of the data, as follows:

Θ̂Gen = arg max
Θ

LGen(Θ) where LGen(Θ) =

N∑

n=1

log pc(n)fc(n)(x(n); θ) (2)

In contrast, the parameters to a discriminative classifier are chosen to minimize the classification
loss, which is approximated by−LDisc, as follows:

Θ̂Disc = arg max
Θ

LDisc(Θ) where LDisc(Θ) =

N∑

n=1

log
pc(n)fc(n)(x(n); θ)
∑K

k=1 pkfk(x(n); θ)
(3)

OnceLDisc is expanded, one can easily see its relationship toLGen:

LDisc(Θ) =

N∑

n=1

log pc(n)fc(n)(x(n); θ)

︸ ︷︷ ︸

LGen(Θ)

−

N∑

n=1

log

K∑

k=1

pkfk(x(n); θ)

︸ ︷︷ ︸

LX(Θ)

(4)

Thus, the difference betweenLDisc andLGen is LX, which represents the log-likelihood of the
probability model over the input spaceX. This explains the fact that generative models tend to be
biased towards those that maximize the likelihood of training data while the discriminative models
are free from bias errors due to any misrepresentation of theinput distributionp(X).

To further illustrate the different flavors of the two approaches, we present a well-studied
discriminative-generative pair of classifiers: naive Bayes and logistic regression. (For details, see
[Mitchell, 2005].) Here, we assume that the parameters to the classifiers are already estimated,
based on the procedure described above, and our goal is to show the different classification rules
associated with each classifier. The parameters to the NaiveBayes classifier are the estimates to
the distributionsP (C) andp(X|C), while the parameters to the logistic regression classifierare the
weights{wm}

d
m=0.

For simplicity, we assume that there are only two classes, i.e.,C ∈ {0, 1}. Given a new input vector
xnew = {x1, ..., xd}, the naive Bayes classifier will assignxnew to the labelcnew that satisfies

cnew ← arg max
k

P (C = k)

d∏

i=1

p(Xi = xi|C = k) (5)
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while logistic regression will assignxnew to cnew = 0 if

P (C = 1|X = xnew)
︷ ︸︸ ︷

1

1 + exp(w0 +
∑d

i=1 wixi)
<

P (C = 0|X = xnew)
︷ ︸︸ ︷

exp
(

w0 +
∑d

i=1 wixi

)

1 + exp
(

w0 +
∑d

i=1 wixi

) (6)

which boils down to

1 < exp

(

w0 +

d∑

i=1

wixi

)

, (7)

and tocnew = 1 otherwise. Comparing the two, one can see that the classification rules are drasti-
cally different and thus this illustrates the difference inapproach between generative and discrimi-
native classifiers.

In general, the generative approach will learn the best model for the joint distributionp(X, C) but
its conditional distributionp(C|X) will result in a biased classifier unless an accurate model of
p(X) is used. Since the true distributionp(X) is rarely known, the generative model will result in
some degree of bias and thus a discriminative classifier is generally believed to be superior to its
generative counterpart. However, this long-held belief isonly partly true, as[Ng and Jordan, 2001]
show in their empirical comparison of naive Bayes to logistic regression. Their study confirms that
the naive Bayes model indeed has a higher asymptotic error than logistic regression, but it also
reveals an interesting discovery: the Bayes model converges to its steady-state parameters at a much
faster rate. Ifd is the dimension of the input vector, the naive Bayes model converges with O(log d)
number of training examples, while logistic regression requires O(d) number of training examples
for convergence. Thus, this suggests an optimal classification policy whereby one should first apply
the generative model, then switch to the discriminative model when there are sufficient data for the
discriminative learning to converge to a model of lower asymptotic error.

Theoretical results and empirical results are given in[Ng and Jordan, 2001] to support this hypoth-
esis. The experiments were performed on 15 datasets from theUCI Machine Learning repository
[Newmanet al., 1998]. Figure 1 shows the empirical results, where the asymptoticclassification
error is plotted against the number of training examples. Eight datasets are with continuous inputs
and seven are with discrete inputs, as labelled in the figure.It was found that in most cases, the
naive Bayes model did converge faster but to a model of higherasymptotic error, compared to the
logistic regression model. The few exceptions to this observation were small datasets that did not
have enough training examples for logistic regression to converge to its optimal model of lower
asymptotic error.

4 Discriminative approaches

In many aspects, discriminative approaches can be interpreted as function fitting. GivenX, dis-
criminative approaches aim to learn a direct mapping from the inputX to the output labelC, either
through the direct estimation of the class-conditional probability distributionP (C|X) or through
other methods that achieve minimal classification error. The advantage of discriminative classifiers
is that they concentrate on finding the decision boundary that separates the various classes of nor-
mal and anomalous system behaviors. As a result, compared togenerative classifiers, discriminative
classifiers are usually more robust against outliers in the data. But as a result of this focus (solely on
the decision boundary), the rest of the space is generally ignored. Thus, discriminative approaches
offer much less insights about the structure of the underlying system, which makes it difficult for
discriminative approaches to deal with missing data.

Popular discriminative approaches include logistic regression, linear/quadratic/regularized discrim-
inant analysis, random forests, distance-based discrimination, support vector machines and tradi-
tional neural networks. In particular, this section focuses on the last three methods. For each method,
we will provide a brief explanation and present a subset of the current literature that is especially
relevant to anomaly detection.
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Figure 1: A comparison of the generalization error from the naive Bayes model and the logistic
regression model, as a function ofm, the number of training examples. The results for logistic
regression are shown as dashed lines while the results for naive Bayes are shown as solid lines.
Reproduced from[Ng and Jordan, 2001]. 5



4.1 Distance-based discrimination

In this subsection, we will introduce a variety of classifiers and outlier detectors that uses the notion
of spatial distance to discriminate between normal and anomalous feature vectors. (Normal feature
vectors are feature vectors that correspond to normal classes; anomalous feature vectors are defined
similarly.) The distinction between classifiers and outlier detectors is subtle, but primarily, classifiers
are trained in a supervised learning setting, where the training data consist of labelled instances, i.e.,
{x(n), c(n)}Nn=1, while outlier detectors may employ clustering or dimension reduction techniques
that are trained in an unsupervised learning setting, wherethe training data are unlabelled, i.e.,
{x(n)}Nn=1.

In addition, many outlier detection schemes are based on thefollowing two assumptions about the
training data: The first is that the training data contains a large portion of normal feature vectors. The
second assumption is that the anomalous feature vectors canbe qualitatively distinguished from the
normal feature vectors. With these two assumptions of rarity and deviation from normal character-
istics, the anomalous feature vectors can be treated as outliers, and thus outlier detection algorithms
can be used to detect anomalies.

4.1.1 Nearest neighbor

The nearest neighbor classifier is one of the most commonly used methods for anomaly detection.
The intuition behind this algorithm is simple: feature vectors that are close together, in respect to
some distance metric, belong to the same class. The nearest neighbor classifier assumes labelled
training data{x(n), c(n)}Nn=1 and assigns the new instancexnew to the same class as its closest
neighbor. A popular generalization of this method is thek nearest neigbor (kNN) classifier, where
thek nearest neighbor toxnew are used to determine its classcnew. One way of determiningcnew is
by majority vote, wherecnew is assigned to the most common class among thek neighbors. Another
way is to weigh each neighbor’s vote as a function of its distance toxnew, so that closer neighbors
may have higher influence on the vote than farther neighbors.In this weighted majority voting
scheme, the weights corresponding to each distinct class are summed together andcnew is assigned
to the class with the maximum weight.

ThekNN approach has been applied with success to anomaly detectionin [Liao and Vemuri, 2002].
In this work, thekNN classifier was used to detect network intrusions from tracesof program behav-
ior. This work leverages existing work in text categorization, and translates a program behavior into
a text format, wherekNN can be used to classify between normal or intrusive behavior. Specifically,
the approach treats each system call as a “word” and a collection of system calls throughout program
execution as a “document”. The study first trained thekNN classifier using simulated data that were
free of attacks, in order to characterize normal behavior. Anew instancexnew is characterized as an
anomaly (associated with an intrusive attack) if the average distance of itsk nearest neighbors falls
above a given threshold. Experiments were performed on the 1998DARPA Intrusion Detection Sys-
tem Evaluation data[Lincoln Laboratory, 1998], which include a large sample of computer attacks
embedded in normal background traffic. For a givenk, the performance ofkNN is measured using
the Receiver Operating Characteristic (ROC) curve, which plots the intrusion detection accuracy as
a function of the false positive probability. Figure 2 showsthe performance ofKNN for different
values ofk.

For smallk, the runtime forkNN is O(N) whereN is the number of computer processes in the
training data. As a result,kNN may not be efficient whenN is large. To improve uponkNN , it
may be advantageous to combinekNN with signature verification, which establishes a set of rules
or properties that correspond to a particular class. The improved version ofkNN learns new classes
that correspond to a subset of known malicious program behavior. Table 1 shows its effectiveness
for detecting novel malicious behavior.

A nice theoretical property of the nearest-neighbor methodis that, as the number of training ex-
amples tends to infinity, the error rate is never worse than twice the Bayes rate[Cover and Hart,
1967]. Despite this useful property, the use of nearest neighbor is not always meaningful, as shown
theoretically and empirically in[Beyeret al., 1999]. In general, one must make sure that the data
is spatially distributed in such a way that there is a clear distinction between the nearest and the
farthest neighbors for any typical input feature vectorxnew . (In some literature,xnew may also be
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Figure 2: Performance ofkNN asROC curves, which display the false positive rate vs. the attack
detection rate for different values ofk. Reproduced from[Liao and Vemuri, 2002].

Table 1: Attack detection rate for theDARPA data whenkNN is combined with signature verification.
Reproduced from[Liao and Vemuri, 2002].

Attack type Instances Detected Detection rate
Known attacks 16 16 100%
Novel attacks 8 6 75%
Total 24 22 91.7%

referred to as thequeryvector.) As dimensionality increases,xnew ’s distance to its nearest neighbor
typically approaches the distance to its farthest neighbor, in as few as 10-15 dimensions.

This phenomenon is confirmed by empirical results that are shown in Figure 3, where the average
ratio of the farthest neighbor’s distance (DMAX) to the closest neighbor’s distance (DMIN ) is
plotted as a function of the data’s dimension (i.e., each training vector ism-dimensional). The
average is taken over 1000 query instances on synthetic datasets of one million tuples. The data
sets are generated by different probability distributions. The line corresponding to “uniform” shows
the performance on a uniformly distributed data set. Similarly, the line corresponding to “recursive”
shows the performance for a data set where every pair of dimensions is correlated and every new
dimension has a larger variance. Lastly, the line corresponding to “two degrees of freedom” shows
the performance for a data set generated from the weighted sum of two uniformly distributed random
variables. Form = 1, the ratioDMAXm

DMINm

≈ 107, which provides quite a contrast between the closest
neighbor and the farthest neighbor. But asm is increased, the contrast becomes insignificant, as
seen by the reduction inDMAXm

DMINm

’s orders of magnitude.

To increase the effectiveness of the nearest-neighbor method for high dimensions, an interactive
system was proposed in[Aggarwal, 2002]. This work describes a human-computer interactive sys-
tem for high-dimensional nearest neighbor search, wherebythe high-dimensional training data are
projected onto carefully chosen lower-dimensional representations, with the hopes that these lower-
dimensional representations better capture meaningful relationships between the training data and
the query vectorxnew . Projections are chosen based on how well the projection distinguishes the
(lower dimensional) clusters containingxnew from the rest of the data. After the computer finds
these projections, these projections are presented visually to the user, who can then express his or
her preferences about these projections so that the meaningfulness ofxnew ’s nearest neighbors can
be tailored from the user’s perspective. The motivation forthis approach is that repeated feedback
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Figure 3: Performance of nearest neighbor for different spatially distributed sets of data. For each
distribution, the ratio of the farthest neighbor’s distance to the closest neighbor’s distance is plotted
as a function of the data’s dimension. Reproduced from[Beyeret al., 1999].

from the user over several iterations should allow the system to find a set of statistically significant
and meaningful neighbors.

This interactive system was tested on a number of real data sets from theUCI machine learning
repository[Newmanet al., 1998]. In particular, a comparison was made between the proposed in-
teractive nearest-neighbor algorithm and the standard (full-dimensional) nearest-neighbor algorithm,
on the ionosphere and segmentation data sets from theUCI repository. The experiment measured the
nearest neighbor classification accuracy for 10 query vectors. The experimental results are shown in
Table 2, where the performance of the interactive system is shown to be clearly superior.

Table 2: Classification accuracy for the standard nearest neighbor algorithm and the proposed
interactive version of the nearest neighbor algorithm. Reproduced from[Aggarwal, 2002].

Data set (dimensionality) Accuracy (StandardNN) Accuracy (InteractiveNN)
Ionosphere (34) 71% 86%
Segmentation (19) 61% 83%

4.1.2 Distance-based outlier detectors

Alternatively, one can avoid the need for labelled trainingdata by using outlier detection methods.
In these methods, the anomalies are treated as outliers to the training data and are identified purely
by their relative spatial location to the other vectors in the training data.

In [Ramaswamyet al., 2000], the distance of a feature vector to itskth nearest neighbor is used to
define the notion of distance-based outliers. In this framework, each vector in the data set is ranked
on the basis of its distance to itskth nearest neighbor and them highest ranked vectors are identified
as outliers. This heuristic makes intuitive sense because the vectors that are ranked the highest will
not be clustered as densely as those in the lower ranks, and thus the highest ranked vectors are
outliers relative to the rest of data.

LetDk(x) denote the distance fromx to itskth nearest neighbor. While standard algorithms (such as
nested-loop and index-based algorithms) can be used to computeDk

(
x(n)

)
for eachx(n) in the data
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set{x(n)}Nn=1, these algorithms are computationally expensive, requiring as much as O
(
N2
)

com-
putations. To address this inefficiency, a partition-basedalgorithm is also presented in[Ramaswamy
et al., 2000]. This partition-based algorithm employs a divide-and-conquer approach, whereby it
partitions the data set into disjoint subsets then prunes entire partitions that are determined to be free
of outliers. Thus, much fewer computations forDk(x) are needed, resulting in substantial speedup
in runtime. The standard algorithms and the proposed partition-based algorithm were tested on a
synthetic data set that contained 100 hyper-spherical clusters of uniformly distributed data, along
with 1000 uniformly scattered outliers. In Figure 4, the runtime for each algorithm is plotted against
the number of data vectorsN , the neighbor indexk, and the dimension of the data vector.

Figure 4: Comparison of the nested-loop, the index-based, and the proposed partition-based algo-
rithms. The runtime for each algorithm is plotted against the number of data vectorsN , the neighbor
indexk, and the dimension of the data vector. In the lower left plot,the nested-loop method was too
slow to be competitive with the other algorithms and was therefore omitted. Instead, the partition-
based algorithm was ran with different number of partitionsand the results were presented instead.
Reproduced from[Ramaswamyet al., 2000].

From Figure 4, one can see that the partition-based algorithm is much faster than the standard al-
gorithms, and scales well with respect to both the size and dimension of the data set. In addition to
this set of experiments on synthetic data, the partition-based algorithm was also tested on a real-life
NBA (National Basketball Association) database, where particular players were flagged as outliers,
due to their dominance by a wide margin in a particular gamingaspect.

In the same spirit of divide-and-conquer,[Knorr et al., 2000] presents a similar approach whereby a
data vector is identified as an outlier if at least a fractionf of the data set is located greater than a dis-
tanceD away. Such an outlier is denoted as aDB(f,D) outlier. Again, the two simple algorithms of
index-based and nested-loop approaches were presented forfinding theDB(f,D) outliers. To find
all DB(f,D) outliers in a data set, both algorithms have a worst-case complexity of O(dN) where
d is the dimensionality andN is the size of the data set. An optimized cell-based algorithm, that
scales linearly withN but exponentially withd, is presented. The idea is similar to that employed in
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[Ramaswamyet al., 2000], where data vectors are partitioned into cells and outliersare determined
on a cell-by-cell basis, rather than on a vector-by-vector basis. This approach allows rapid pruning
of a large number of data vectors that cannot be outliers, which results in significant reduction in
runtime. Experimental results indicate that this cell-based approach outperforms the index-based
and nested-loop approaches ford ≤ 4. This method was also applied to three real-life applications,
which include analysis ofNHL (National Hockey League) statistics, spatio-temporal trajectories
from surveillance videos, and workers’ compensation employer performance data. Figure 5 shows a
subset of the results from the case study on detecting outliers from surveillance videos. The outliers
were determined based on their differences in speed and/or trajectories between a pedestrian’s entry
and exit points. The results show that the idea of DB outlierscan be applied with success to detect
anomalies in spatio-temporal data.

Figure 5: The results of anomaly detection in spatio-temporal data from surveillance videos. The
left plot shows the entire data set. The right plot shows the anomalous trajectories detected using
the method of DB outliers. Reproduced from[Knorr et al., 2000].

So far, we have only examined algorithms that treat the stateof being an outlier as a binary property,
in that, a feature vectorx is an outlier with 0% probability or 100% probability. But insome
scenarios, it may be more meaningful to attributex with the degreeof being an outlier instead.
Such an approach was taken in[Breuniget al., 2000], in which a new outlier detection approach,
based on the notion of thelocal outlier factor(LOF), was proposed. TheLOF measures the degree to
which each data vectorx is an outlier, dependent on how isolatedx is with respect to its surrounding
neighborhood. In contrast to thek-nearest-neighbor algorithm, theLOF approach utilizes the density
of other points aroundx rather than just the distances fromx to itsk closest neighbors.

TheLOF method is implemented as a two-step algorithm. For each datavectorx, the first step finds
all neighboring vectors that are within distanceDk(x) from x, and stores their actual distance from
x in a database. The second step computes theLOFs from this database. The complexity of the first
step is implementation-dependent and was reported to be O(N logN) in [Breuniget al., 2000]’s
implementation and the complexity of the second step is O(N), whereN is the number of vectors
in the data set.

TheLOF algorithm was tested on a synthetic 2-dimensional data set and two real-life sports-related
data sets, one on hockey and another on soccer. The results for the synthetic data set are shown
in Figure 6, where a clear graphical view for all the computedLOF values is presented. Empirical
results for the real-life data sets also show that theLOF method can find meaningful outliers that are
otherwise undetected by existing approaches. This observation is confirmed by a comparison study
by [Lazerevicet al., 2003], where popular outlier detection methods, including theLOF method,
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Figure 6: The local outlier factors for the data in the synthetic data set. Reproduced from[Breunig
et al., 2000].

were evaluated on the 1998DARPA Intrusion Detection System Evaluation data set[Lincoln Labo-
ratory, 1998]. In this study,LOF was compared against:

• Nearest-neighbor: A feature vector is an outlier if the distance to its nearest neighbor ex-
ceeds a given threshold.

• Mahalanobis-distance-based: The mean and standard deviation for the training data is com-
puted. A feature vector is an outlier if the Mahalanobis distance to the mean of the training
data exceeds a given threshold.

• Unsupervised support vector machines: To be explained in Subsection 4.2

The results are presented asROC curves in Figure 7, which shows thatLOF outperforms all other
methods in detecting network intrusions for theDARPA data set.

Figure 7: Comparisons of different anomaly detection algorithms on bursty attacks (right) and on
single-connection attacks (left). Reproduced from[Lazerevicet al., 2003].
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4.2 Support vector machines

Aside from distance-based methods, support vector machines have also been widely used for
anomaly detection, especially in the areas of intrusion detection and medical diagnosis. In this
subsection, we will first explain the supervised version of support vector machines, then briefly
discuss its unsupervised counterpart through an application.

Figure 8: The goal of aSVM is to find the optimal hyperplane that has the maximal distance from
the nearest training patterns. The support vectors (shown as solid dots) are those nearest patterns
that are fixed distance from the optimal hyperplane. Reproduced from Richard O. Duda, Peter E.
Hart and David G. Stork,Pattern Recognition. c©2001 by John Wiley & Sons, Inc.

The objective of a support vector machine (SVM) [Burges, 1998; Dudaet al., 2001] is to define
a decision hyperplane that separates the different classeswith the largest margin from the nearest
training examples. The support vectors, as shown and definedin Figure 8, are the training examples
that define the optimal hyperplane, which forms the perpendicular bisector of the support vectors.
In essence, the support vectors aim to represent the most informative patterns that allow one to best
distinguish between the different classes.

To define these support vectors,SVMs apply a transformation to the data so that the patterns repre-
sented by the data are linearly separable (i.e., can be separated by a hyperplane). This is possible
because nonlinearly-separable patterns can always becomelinearly separable in a sufficiently high-
dimensional representation. Thus, the data are mapped by anappropriate (non-linear) function to a
higher dimension and optimization is performed to find the optimal separating hyperplane.

SVM variants include hard-marginSVMs for separable classes, soft-marginSVMs for non-separable
classes and robustSVMs that generalize to noisy data. The ability to handle noisy data is important
in any detection or classification setting, especially since noiseless orcleandata may be difficult or
expensive to obtain for real-world systems, where data may be be derived from noisy sensor readings
or may be mislabelled due to human/machine error. In addition, for dynamic systems where normal
behavior may change over time, it is especially important for an anomaly detection scheme to be
able to handle noisy data, since the labels assigned to feature vectors during training may become
unreliable.

In [Hu et al., 2003], the standard and robust versions ofSVM are compared to thek-nearest-neighbor
classifier (kNN) [Liao and Vemuri, 2002] on clean and noisy data. The study used the 1998DARPA
Intrusion Detection System Evaluation data set[Lincoln Laboratory, 1998], where a clean data set
and a noisy data set (see Table 3) were extracted for trainingand testing.

The detection results are shown in Figure 9, where the performance of the robustSVM, the standard
SVM and thekNN classifier is expressed asROC curves over the clean and noisy data. On the
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Table 3: The clean and noisy data sets used in the[Hu et al., 2003] study. Reproduced from[Hu et
al., 2003].

Clean data Noisy data

Training
300 normal processes 316 normal processes

(16 mislabelled)
28 intrusive processes12 intrusive processes

Testing 5285 normal processes, 22 intrusive sessions

clean data, the attack detection rate with zero false positive rate was 74.7% for robustSVM, 50%
for standardSVM and 13.6% forkNN , while 100% attack detection rate was attained with a false
positive rate of 3% for robustSVM, 14.2% for standardSVM and 8.6% forkNN . In particular, it
appears thatkNN performed the worst and the robustSVM performed the best. On the noisy data,
the attack detection rate with zero false positive rate was 50% for robustSVM and 54% for standard
SVM, while 100% attack detection rate was attained with a false positive rate of 8% for robust
SVM and 100% for standardSVM (which is practically useless). The robustSVM shows very minor
degradation in performance in the presence of noise, whileSVM shows tremendous degradation.
kNN’s resilience to noise can be explained by the averaging thatit performs on the test vector’sk
nearest neighbors, which allows it to smooth out the impact of the isolated noisy training examples.
Nonetheless, if the training examples were incorrectly classified and the test vector happened to be
one of these incorrectly classified training examples, thenthe kNN classifier would be unable to
detect the intrusive attack. In general, this study shows that robustSVMs are quite well suited for
anomaly detection in noisy data, because robustSVMs are not as prone to over-fitting the noise and
they also lead to faster runtime, due to the reduced number ofsupport vectors.

Figure 9: Performance of the robustSVM, the standardSVM and thekNN classifier is expressed as
ROC curves over the clean data (left) and the noisy data (right).Reproduced from[Hu et al., 2003].

The SVMs discussed so far are supervised methods, where one assumesthe availability of labelled
data{x(n), c(n)}Nn=1 for training purposes. However, in the absence of labelled data or in the pres-
ence of highly unreliable labelled data, thenunsupervisedmethods may be more desirable from
a practical standpoint. An unsupervised version ofSVMs has been proposed by[Schölkopfet al.,
2000]. The high-level idea of the unsupervisedSVM is that it finds the region where the majority
of the data lies and associates these data as one class. The complement of these data is then con-
sidered as belonging to a separate class. This algorithm wasevaluated on theUSPS(United States
Postal Service) data set[Hull, 1994] of handwritten digits, which contains 9298 digital images of
256 pixels, in which the last 2007 images were used as the testset for this empirical study. The top
20 outliers are shown in Figure 10. Below each digital image,the italic number is the output of the
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SVM and the boldface number is the class label assigned to the image. As one can see, these outliers
correspond to atypical examples that are especially difficult to match to their representative digits.

Figure 10: The outliers identified by the unsupervisedSVM, ranked by the negative output of the
algorithm. Reproduced from[Schölkopfet al., 2000].

A comparative study on the effectiveness of the unsupervised SVM and other distance-based outlier
detection algorithms in intrusion detection is presented in [Lazerevicet al., 2003]. The results of
this study are presented previously in Figure 7. Aside from intrusion detection systems,SVMs have
also been applied with success to glaucoma diagnosis[Chanet al., 2002].

4.3 Neural networks

A neural network[Haykin, 1998; Dudaet al., 2001] is a biologically-inspired method of compu-
tation based on an abstract representation of the brain. Analogous to the brain, which consists of
a large number of highly interconnected network of neurons,a neural network consists of various
units that are organized in layers to simulate the learning process of the brain.

Like the brain, a neural network learns by example, where each neural network is trained for a
specific application through a learning process. This learning process can either be supervised or
unsupervised. In supervised learning, a set of labelled data{x(n), c(n)}Nn=1 is processed by the neu-
ral network. For eachx(n), the neural network compares its classification outputc against the true
labelc(n), and uses this error to finetune its parameters accordingly.In contrast, unsupervised learn-
ing uses a set of unlabelled data{x(n)}Nn=1. The process by which a neural network self-organizes
the data into different classes without the use of external labels is known as self-organization or
adaptation. Generally, supervised learning is performed off-line and unsupervised learning is per-
formed online. Neural networks are used extensively in anomaly detection, due to their success in
pattern recognition and data classification. In this subsection, we focus on applications where the
neural networks are learned in a supervised manner.

The basic unit of a neural network is referred to as aneuron, after the biological neuron that inspired
its model. Each neuron has one basic function: to emit a response of the weighted sum of its inputs.
The nature of the response depends on theactivation functionof the neuron. Each neuron can have
a different activation function. But in practice, most neurons have the same activation function and
it is often chosen to be the logistic function.

A neural network consists of an input layer, a variable number of hidden layers, and an output layer
of neurons. Each layer can have a variable number of neurons,with the exception of the input layer,
which is usually constrained to have as many neurons as the dimension of the input feature vector.
The input layer takes as input the data, which is in turn processed by the hidden layer(s). The result
of this hidden layer processing is then passed on to the output layer, which outputs the classification
result. Figure 11 shows the basic structure of a three-layerneural network.

Theoretically, a three-layer neural network can implementany continuous function (either for den-
sity estimation or classification), given a sufficient number of hidden units and the proper model
parameters. However, the question of choosing the optimal neural network structure for a particular
problem still remains somewhat of an art. (See Figure 12 for avariety of decision boundary that one
can implement with neural networks.) As a result, the designof a neural network for any non-trivial
application may still require human experts who are adept inthe art of neural networks.
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Figure 11: A fully-connected three-layer neural network. The input units represent the components
of an input feature vector. The hidden units represent a black box that encapsulates the hidden
relationships between the input feature vector and its corresponding output class. The output units
represent the output of the discriminant function that determines the output class to which the input
feature vector belongs. Reproduced from Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Recognition. c©2001 by John Wiley & Sons, Inc.

Neural networks have been widely applied to anomaly detection. Popular applications include in-
trusion detection systems[Ryanet al., 1998], handwriting recognition[LeCunet al., 1990], image
sequence analysis[Singhet al., 2000; Markou and Singh, 2006] and medical diagnosis[Tarassenko,
1995; Chanet al., 2002]. In the interest of space, we describe only a subset of this work.

In [Ryanet al., 1998], a neural network was trained to detect network intrusions based on anomalous
behaviors on the part of the individual users. This neural network intrusion detector,NNID for short,
is trained to identify computer users based on the commands they issue during the day. At the end of
each day,NNID is run to detect any anomalies in the uers’ daily session. If anomalies are detected,
then an investigation will be initiated to diagnose the cause for the anomalies. TheNNID system is
based on a three-layer neural network, in which the input layer consisted of 100 units, the hidden
layer consisted of 30 units and the output layer consisted of10 units, one for each of the ten users
that partook in this experiment. TheNNID system was built and tested on a machine at the University
of Texas at Austin, where data were collected from this machine for 12 days, which resulted in 89
data vectors.NNID was trained on 8 randomly chosen days of data (65 data vectors) and tested on
the remaining 4 days of data (24 data vectors). In an environment of 10 users,NNID exhibited a 96%
detection accuracy rate with a false alarm rate of 7%. These results confirmNNID ’s promise as an
offline monitoring system for intrusion detection.

In [LeCunet al., 1990], a highly sophisticated neural network, consisting of six layers, were devel-
oped for classifying handwritten digits from theUSPS(United States Postal Service) data set[Hull,
1994] of handwritten digits. This work leverages the idea that shape recognition can be improved
by detecting and combining local features, and translates this idea into the architecture of the neural
network by constraining the connections in the first few layers to be local, through the use offeature
maps. Units on a feature map are constrained to perform the same operation on different parts of the
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Figure 12: A two-layer neural network can only classify between two linearly separable classes. As
the number of layers to a neural network is increased, an arbitrarily complex decision boundary can
be formed, which can be used to classify between multiple nonlinearly separable classes. Repro-
duced from Richard O. Duda, Peter E. Hart and David G. Stork,Pattern Recognition. c©2001 by
John Wiley & Sons, Inc.

image. Multiple feature maps extract different features from the same image, and are thus a neces-
sary component of this neural network. The structure of the neural network is shown in Figure 13,
where each hidden layer is labelled by an “H” label. Next to each “H” label, “m@s× s” means that
the hidden layer is composed ofm groups of units, each group arranged in as-bys plane. Altogether,

Figure 13: The architecture of the six-layer neural networkused to classify handwritten digits from
theUSPSdata set. Reproduced from[LeCunet al., 1990].
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the neural network contains 4635 units, 98442 connections and 2578 independent parameters. After
30 training passes on a training set of 7291 handwritten digits and 2549 printed digits, the neural
network achieved an error rate of 1.1% and theMSE (mean of squared errors) of 0.017 on the training
data. When tested on the test set of 2007 handwritten digits and 700 printed characters, the neural
network achieved an error rate of 3.4% and theMSE of 0.024. The classification errors were solely
due to the mislabelling of the handwritten characters.

In [Singhet al., 2000], neural networks were used in conjunction with clustering to detect novel
objects in video sequences. During a test run, the trained neural network processes the test vectors.
Any test vectors, that result in a large discrepancy betweenthe actual and the target outputs of the
neural networks, are associated with one or more new classes. These test vectors, that correspond
to one or more novel classes, are set aside in a bin. At the end of the test trial, the data in the bin is
clustered and any cluster that is found to be statistically different from any known class distributions
denotes a new class.

This algorithm was implemented using a three-layer neural network, that contains 42 units in the
first layer, 175 units in the hidden layer and 4 units in the last layer. The image data consists of
3777 samples extracted from regions (such as trees, grass, sky, and river reflecting the sky or trees).
Trials were conducted such that the training data consistedof all classes but one, and the testing data
consisted of instances from the excluded class (not used in training), along with a noisy version of
the training data. The results for detecting the class “Sky”are presented in Table 4. In this trial,
the “Sky” data are completely excluded from training and areonly used for testing. Table 4 shows
that the test data is classified with an accuracy of 79.6%. From the 136 test examples from the
“Sky” data, only 129 examples were correctly assigned to thebin for the clustering analysis. The
composition of the clusters (also shown in Table 4) were thenanalyzed, and “Sky” was found to be
statistically different enough to be assigned a new class.

Table 4: The results of using neural network in conjunction to clustering to detect novel objects
in video sequences. The left table shows the neural network’s confusion matrix and the bin
composition at the end of the test run. The right table shows the cluster composition at the end of
clustering. Reproduced from[Singhet al., 2000].

For a more extensive review of novelty detection literaturebased on neural networks, see[Markou
and Singh, 2003].

5 Generative approaches

In contrast to discriminative approaches, generative methods estimatep(X|C) andP (C) for each
classC, then apply Bayes’ rule to compute the class-conditional distributionP (C|X):

P (C|X) =
p(X|C)P (C)

p(X)
(8)

Under this paradigm, the classification task is effectivelyreduced to modelling the distributions
p(X|C) and p(C). In general, this approach requires the estimation of a larger number of pa-
rameters. Since these parameters are estimated via maximumlikelihood, generative models are
usually less optimized for classification compared to the discriminative models, which optimize the
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classification error directly. Nonetheless, generative models are favored among the community of
model-based diagnosis[de Kleeret al., 1992; Williams and Nayak, 1996] because generative mod-
els offer insights about the structure of the system and are useful in providing causal explanations
for observed phenomena.

Given a set of observed data, a generative model relates the observed data to hidden variables that
might have caused the observed data. The observed data are represented by the feature vectors
{x(n)}Nn=1 and the hidden variables constitute the unknown classesC. (In most cases, a generative
model may contain additional hidden variables that are beyond the scope of the classes, but are
useful in improving the prediction between the input vectorsX and their output classesC.) Under
this framework, an input feature vectorx is interpreted as a noisy observation of some unknown
process in the system. This unknown process is assumed to switch between different classes or
modesof behavior. Depending on the class under which the process is currently operating, the
system will generate observations that are specific to that class. Thus, the class of system behavior
can be inferred through classifying the observations.

The goal of a generative classifier is to output the classc∗ that would have generated, with the
highest probability, the observation represented by the input feature vectorx. Thus, before classifi-
cation or anomaly detection can occur, a model of the system must be developed, by incorporating
prior information and using unsupervised learning on the unlabelled training data{x(n)}Nn=1. Once
the modelM is developed, inference is performed onM to computeP (C = k|X = x;M),
the probability of each classk conditional the input feature vectorx, with respect to the model
M. Classification boils down to simply choosing the class withthe highest probability, i.e.,
c∗ = argmaxk P (C = k|X = x;M). In essence, a generative model must capture the system
dynamics under each class or mode of behavior. On its own, a generative model will not predict
the presence of new classes. Instead, one must apply probability thresholding, hypothesis testing or
other more sophisticated detection schemes, to the generative models to detect possible emergence
of new classes.

In this section, we start off by presenting two complementary methods of density estimation that are
commonly used to create generative models. The first is a non-parametric method known as Parzen
windows, while the other is a parametric method known as modelling by mixture of Gaussians. The
second part of this section discusses more structured representations used for generative modelling.
Before we discuss generative models oftemporalprocesses, we will explain how state estimation
is related to anomaly detection, as state estimation plays acrucial part in the anomaly detection of
temporal processes. Lastly, we will examine popular modelsof temporal processes, such as hidden
Markov models and dynamic Bayesian networks, and provide references to recent work that has
applied these models for classification or anomaly detection.

5.1 Parzen windows

The Parzen windows algorithm[Dudaet al., 2001] is an unsupervised method of non-parametric
density estimation and can be easily adapted for classification. This algorithm makes use of akernel
function to interpolate the probability of the input space that is notsupported by the data. This
kernel function can be quite general, as long as it satisfies the properties for a valid probability
density function.

Given a kernel function, the Parzen windows method fits this kernel function around every element of
the data set and uses a linear combination of these kernels toapproximate the probability distribution
of the data. For simplicity and convenience, the Gaussian distribution is often used as the kernel
function, and the probability of a test vectorx is approximated as a mixture of radially symmetric
Gaussians with the same varianceσ2. For a data set consisting ofN d-dimensional vectors, the
Parzen windows method estimates the true distributionp(x) by:

p̂N (x)
△
=

1

N

N∑

n=1

ϕ

(
x− x(n)

σ

)

(9)

=
1

N

N∑

n=1

1

(2π)d/2σd
exp

(

−
||x− x(n)||2

2σ2

)

(10)
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With Gaussian kernels, points that are far away from the testpoint are virtually irrelevant, as the
contribution of these points decreases exponentially withthe square of the distance. The width of
the kernel is determined by the varianceσ2. If σ is too small, then the estimated distribution of the
data would be overfitting the data, in the form of peaks aroundeach data point. Ifσ is too large, then
the estimated distribution would suffer from low resolution, as distributions of different classes may
overlap and blend separate classes into one single class. With a limited number of data, one must
seek a compromise between these two extremes and empirically fix σ to minimize the classification
error. (This trade-off is illustrated in Figure 14.) But in the case where an unlimited number of
examples is available, one can letσ → 0 and achieve an asymptotically close estimate to the true
distribution of the data. Specifically, for allx, when the number of examplesN goes to infinity,
pN (x) converges top(x) in the mean square sense, where

lim
N→∞

E [pN (x)] = p(x) (11)

lim
N→∞

var [pN (x)] = 0 (12)

Figure 14: Three Parzen-windows estimate of the data, basedon the same five testing examples.
The vertical axes are scaled to show the structure of each distribution. In this figure,h has the same
function asσ from our discussion. Reproduced from Richard O. Duda, PeterE. Hart and David G.
Stork,Pattern Recognition. c©2001 by John Wiley & Sons, Inc.

For classification, the generative paradigm is followed:p(X|C) is first estimated from the data using
Parzen windows density estimation andP (C) is either estimated by a simple frequency distribution
(if C is finite) or a subjective prior distribution that reflects one’s belief about the distribution of
classes. (In our equations, we assume the frequency approach for estimatingP (C).) ThenP (C|X)
is computed from the Bayes rule, as shown in Equation 8. At this point, the data should have been
partitioned into different classes, based on the shape of the probability distribution (Equation 9) as
estimated by the Parzen windows method. As a result, the following estimates can be obtained for
each classk:

p(X = x|C = k) ≈
1

Nk

∑

n∈Gk

ϕ

(
x− x(n)

σ

)

(13)

P (C = k) ≈
Nk

N
(14)

whereN is the number of data vectors, of whichNk vectors belong to classk. Note that the sum for
p(X = x|C = k) is taken over the indices inGk, which correspond to those data vectors that belong
to classk. In other words,|Gk| = Nk. Combining these two expressions results in locally weighted
averaging of the data:

P (C = k|X = x) ≈

∑N
n=1 ϕ

(
x−x

(n)

σ

)

I
(
x(n) 7→ k

)

∑N
n=1 ϕ

(
x−x(n)

σ

) (15)

whereI
(
x(n) 7→ k

)
is an indicator function that evaluates to 1 ifx(n) belongs to classk and evalu-

ates to 0 otherwise. Lastly,x is assigned to the classk with the highest probabilityP (C = k|X =
x).
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In fact, one can interpret the Parzen classifier as a generalization of thek-nearest-neighbor method.
In the k-nearest-neighbor classifier, the class of a test pointx is determined by the majority vote
of the classes fromx’s k nearest neighbors. Instead of examining just thek-nearest neighboring
vectors, the Parzen classifier considers every vector in thedata set and weights their votes by a
kernel function centered on the test pointx. Although the method considers every data vector, not
every vector actually contributes to the majority vote, since vectors that are located outside of the
kernel function will have 0 weight.

In the limit of infinite amount of data, the Parzen window estimate of the data distribution approaches
the true distribution. In practice, many data vectors may berequired for a reasonable estimate of
the data distribution. This demand for data grows exponentially with the dimensionality of the data,
limiting this method’s applicability due to its severe computation and memory requirements.

The method of Parzen windows has been applied with success tonovelty detection for intrusion
detection in[Yeung and Chow, 2002]. In this work, novelty detection is formulated as a hypothesis
test, where the log-likelihood of the test vector,L(x), and the log-likelihood of an arbitrary vector
y sampled from the normal class,L(y), are compared. IfP (L(y) ≤ L(x)) > ψ for some false
alarm rateψ ∈ (0, 1), thenx is labelled as belonging to the normal class. Otherwise,x is labelled
as anomalous. The study used the 1999KDD Cup data set[Hettich and Bay, 1999], which contains
a standard set of data to be audited, including a wide varietyof intrusions simulated in a military
network environment. The study compared the proposed Parzen-based intrusion detection system
against theKDD Cup winner, using the true acceptance rate (TAR) and the true detection rate (TDR)
as the performance metrics. TheTAR measures the percentage of normal instances in the test set that
were correctly classified as normal, while theTDR measures the percentage of intrusions in the test
set that were correctly classified as intrusions. To estimate the distribution for the normal class, 3000
randomly generated examples were used as training data. Theempirical results are shown in Table
5, where the Parzen-based detector outperformed theKDD Cup winner in the detection of intrusions,
with similar or much higher values for theTDR. On the more difficult types of intrusion (types 3 and
4 shown in Table 5), theKDD Cup winner performed poorly while the Parzen-based detector was
able to dominate by a clear performance margin.

Table 5: Comparison of the Parzen-based intrusion detectorand theKDD Cup winner. The higher
performance score is shown in boldface. Reproduced from[Yeung and Chow, 2002].

Method TAR TDR
Normal Intrusion Type 1 Intrusion Type 2 Intrusion Type 3 Intrusion Type 4

Parzen-based 97.38% 99.17% 96.71% 93.57% 31.17%
KDD winner 99.45% 87.73% 97.69% 26.32% 10.27%

5.2 Mixture of Gaussians

A Gaussian mixture density is ad-dimensional probability distribution, defined by the weighted sum
of M components:

p(X|θ) =

M∑

m=1

p(X|m)P (m) (16)

where each componentp(X|m) is a d-dimensional multivariant Gaussian distribution with mean
µm and covarianceΣm:

p(X|m) =
1

(2π)d/2|Σi|1/2
exp

(

−
1

2
(X− µm)′Σ−1

m (X− µ)

)

(17)

andP (m) is a mixture coefficient, whereP (m) ≥ 0 for m = 1, ...,M and
∑M

m=1 P (m) = 1.
Thus, the Gaussian mixture density is parametrized by the parameters from all its components:

θ = {µ1, ..., µM ,Σ1, ...,ΣM , P (1), ..., P (M)} (18)

For classification, the data from each classk are represented by a Gaussian mixture density, where

p(X|C = k)
△
= p(X|θk) (as given by Equation 16). The parametersθk are typically optimized in a
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maximum likelihood sense by using the expectation-maximizationalgorithm[Dempsteret al., 1977;
Bilmes, 1997], or in a Bayesian sense by using Markov chain Monte Carlo methods[Gilks et al.,
1995] to sample the parameters from the posterior distribution. The class probabilityP (C) is of-
ten assumed to be a discrete distribution or a multivariate Gaussian for computational efficiency, in
which the parameters toP (C) are typically learned using maximum likelihood or Bayesiantech-
niques. A test vectorx is assigned to the most probable classc ∈ {1, ...,K} such that:

c = arg max
1≤k≤K

P (C = k|X = x) ∝ argmax
1≤k≤K

p(X = x|θk)P (C = k) (19)

Gaussian mixture models have been applied with success to speaker identification[Reynolds and
Rose, 1995] and active learning for anomaly detection[Pelleg and Moore, 2005]. In [Reynolds and
Rose, 1995], the use of Gaussian mixture densities for modelling speaker identity was motivated by
two main reasons, that (1) Gaussian components can effectively model a speaker’s acoustic classes
and (2) Gaussian mixtures can be used to model any arbitrary distributions, thus lending to their
versatility. In this study, the classification task was to correctly classify a test segment of speech
and identify the speaker from whom the speech segment was generated. The experiments were con-
ducted on a subset of theKING speech database[Godfreyet al., 1994], which contains conversation
speech samples from 51 male speakers. For each speaker, there are 10 independent conversations of
approximately 45 seconds. The performance metric is taken to be the percentage of correct identifi-
cation. The results for the study are presented in Figures 15and 16. In Figure 15, the performance
of speaker identification is plotted against the number of mixture components in the Gaussian mix-
ture model, for test segments and training segments of varying lengths. The empirical results show
that beyond 16 components, there is only marginal improvement in the performance. Moreover,
as the amount of training data is reduced, it becomes more crucial to choose the optimal number
of components for the Gaussian mixture. In Figure 16, the speaker identification performance is
plotted against the length of the test speech segment, for different number of speakers. The left plot
presents the results for clean speech and the right plot presents the results for the telephone speech.
For clean speech, near perfect identification is achieved when the test speech is 15 seconds. How-
ever, for telephone speech, due to the low signal-to-noise ratio of the audio data, there is a significant
degradation in performance.

Figure 15: Speaker identification performance as a functionof the number of components in the
Gaussian mixture model. The left plot shows the performancefor test segments of 1,5, and 10
seconds in length, in which the model is trained on 1 minute oftraining segment. The right plot
shows the performance for training segments of 30,60 and 90 seconds of speech, where the test
segment is 5 seconds. Reproduced from[Reynolds and Rose, 1995].

In addition to speaker identification, Gaussian mixture models have also been applied in an active
learning framework to find rare and useful anomalies. The active learning approach proposed by
[Pelleg and Moore, 2005] assumes that the distribution of the data is extremely skewed towards
the normal class and that a mixture model can be used to fit the data. The active learning process
proceeds in rounds, where the computer attempts to learn themodel of the data from a small number
of labelled training instances along with a large number of unlabelled training instances. Then it
identifies a small number of difficult instances and elicits the human user to provide labels for these
difficult instances. The human user labels these instances and add them to the collection of labelled
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Figure 16: Speaker identification performance as a functionof the test segment length, for popula-
tion sizes of 16, 32 and 49 speakers. The model contains 50 components and is trained using 80-100
seconds of speech per speaker. The left shows the performance for clean speech and the right shows
the performance for noisy telephone speech. Reproduced from [Reynolds and Rose, 1995].

data, and the cycle repeats. This framework is flexible in that the labels are unconstrained and the
user has the freedom to add, delete and change the classes at will. As a result, this system allows for
adaptive learning of a dynamic data set.

This work presents several selection methods by which unlabelled instances are chosen for the feed-
back process. The following criteria forhint selectionwere examined:

• LOWLIK : Choosing instances with low likelihood, i.e., data on which the model performs
worst. In particular, instances are ranked in increasing order of model likelihood and the
ones with low likelihoods are chosen.

• AMBIG : Choosing ambiguous instances, i.e. data that the computerhas the least certainty
about. In particular, instances are ranked in decreasing order of entropy and the ones with
high entropy are chosen.

• MIX -AMBIG -LOWLIK : Hybrid approach of the two selection schemes described above.

• INTERLEAVE: Choosing points based on the ranking from the perspective of just one com-
ponent, instead of a mixture of components.

Experiments were ran on synthetic data and real data. The last approach ofINTERLEAVE seems
to perform best in both synthetic and real cases. Working from the definition of a mixture model,
this active learning approach allows each component to nominate its favorite queries. Empirical
results show that this method works well in the presence of noisy data and extremely rare anomalies.
Figures 17 and 18 shows the learning curves for various real data sets, as characterized in Table 6.
The learning curves show the percentage of classes discovered as a function of the number of hints
requested by the computer system.

Table 6: Properties of the real-life data sets used in the[Pelleg and Moore, 2005] study. Reproduced
from [Pelleg and Moore, 2005].

Data set # dim # records # classes smallest largest
class class

ABALONE 7 4177 20 0.34% 16%
KDD 33 50000 19 0.002% 21.6%
EDSGC 26 1439526 7 0.002% 76%
SDSS 22 517371 3 0.05% 50.6%
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Figure 17: The learning curves for theABALONE [Newmanet al., 1998] (left) and theKDD [Newman
et al., 1998] data sets. Reproduced from[Pelleg and Moore, 2005].

Figure 18: The learning curves for theEDSGC[Nichol et al., 2000] (left) and theSDSS[Finkbeiner
et al., 2004] (right) data sets. Reproduced from[Pelleg and Moore, 2005].

The experiments show that this tremendously reduces the number of instances that a human user
must label before presentation to an automatic learner. In fact, a user only needs to label one or two
hundred examples before a rare anomaly from a huge data set isbeing presented to the user.

To allow for greater flexibility in the Gaussian mixture model, [Lee and Lewicki, 2000] proposed
thegeneralized Gaussian mixture model, whose mixture component can deviate from normality to
represent platykurtic and leptokurtic distributions. As acomparison, the generalized Gaussian mix-
ture model was compared against the standard Gaussian mixture model and thek-means clustering
algorithm, in the unsupervised classification of the data set shown in Figure 19. The number of
classes is assumed known and the classification task is to learn the model parameters and to clas-
sify the data. The classification error was 4.0%±0.5% for the generalized Gaussian mixture model,
5.5%±0.3% for the Gaussian mixture model, and 18.3% for thek-means clustering algorithm. The
study showed that the generalized Gaussian mixture model isequal or superior to the Gaussian
mixture model, especially in data that are non-Gaussian andabound with outliers.

5.3 State estimation vs. anomaly detection

Before we discuss generative models for anomaly detection of temporal processes, it is useful to
relate state estimation to anomaly detection. In the generative framework, probabilistic models
encode how a system evolves over time. At each timeτ , the state is denoted bySτ and the history
of observations up to timeτ is given byy1:τ = {y1, ...,yτ}. The posterior distributionp(Sτ |y1:τ )
represents our belief about the system at timeτ given the most up-to-date information.
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Figure 19: Example data used in the unsupervised classification task in[Lee and Lewicki, 2000].
The data in each class was generated by a random distribution. Reproduced from[Lee and Lewicki,
2000].

State estimation is a two-step process that is achieved through Bayesian updating. Given
p(St−1|y1:t−1), state prediction is the act of computing the predictive distribution p(St|y1:t−1),
which represents the best estimate ofSt given observations up to timet − 1. Whenyt, the obser-
vation at timet, is made available, we apply this information to update the predictive distribution
and obtainp(St|y1:t), the posterior distribution at timet. The two steps of prediction and correction
comprise the overall process of state estimation, as shown in Figure 20.

t−1

at time t−1
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at time t
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Figure 20: The iterative process of state estimation. Stateprediction is the act of computing
p(St|y1:t−1), the predictive distribution for the state at a future timet while using only the history
of observations from time1 to t − 1. State correction is the act of updating the predictive distribu-
tion p(St|y1:t−1) to yield the posterior distributionp(St|y1:t), which incorporates the most current
observation as part of the state estimate. Classification and anomaly detection involve mathematical
operations on the posterior distributionp(St|y1:t).

Both classification and anomaly detection typically involve operations on the posterior distribution.
Givenp(St|y1:t), classification boils down to identifying the class (which is usually represented as
part of the state) with the highest probability, and anomalydetection reduces to thresholding the pos-
terior distribution then attributing the low-probabilitystates to a completely new class. In addition to
strictly using the posterior distribution, one can also usesignificant changes between the predictive
distributionp(St|y1:t−1) and the posterior distributionp(St|y1:t) as an indication for abrupt state
changes. Whenp(St|y1:t) differs dramatically fromp(St|y1:t−1), this usually means that a state
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transition occurred at timet and the effect of this transition was captured by the observation yt. By
using the discrepancy betweenp(St|y1:t−1) andp(St|y1:t) as an additional detection criterion, one
may be better able to inferwhenexactly the system changes from a normal state to an anomalous
state, and vice versa.

Thus, it is clear that generative classification/detectionrelies heavily on state estimation. In turn, the
efficiency of state estimation depends on the class of modelsbeing used for generative modelling
and the type of inference algorithms being used for reasoning about these models.

5.4 Hidden Markov models

A hidden Markov model (HMM ) [Rabiner, 1989] is a graphical model that represents a Markov
process whose stateSt is hidden and can only be inferred through (noisy) observationsYt. An HMM
assumes that the system evolves according to a first-order Markov process in which the current state
depends only on its previous state:

p(St|S0:t−1) = p(St|St−1), t = 1, 2, ... (20)

and additionally, observations depend only on the current states:

p(Yt|S0:t) = p(Yt|St), t = 1, 2, ... (21)

For simplicity, mostHMMs assume that the probabilitiesp(St|St−1) andp(Yt|St) are stationary, in
that these distributions do not change with time:

p(St|St−1) = p(Ss+t|Ss+t−1), s ≥ 0
p(Yt|St) = p(Ys+t|Ss+t), s ≥ 0

(22)

With these assumptions, anHMM characterizes the temporal process by its transition model
p(St|St−1) and its observation modelp(Yt|St). Thus, the state evolves probabilistically accord-
ing top(St|St−1) and is observed through noisy measurements according top(Yt|St), as shown in
Figure 21.

. . . . . . . .St

Yt

t−2

Yt−2

S t−1

Yt−1

S

Figure 21: A hidden Markov model. The stateSt evolves probabilistically according top(St|St−1),
where the causal dependence betweenSt−1 andSt is shown by the arrow fromSt−1 to St. In
turn, the stateSt is observed through noisy measurements according top(Yt|St), where the causal
dependence betweenSt andYt is represented by the arrow fromSt to Yt.

HMMs are well-studied and established algorithms are available for inference and parameter learn-
ing. For classification, the Viterbi algorithm[Viterbi, 1967] can be applied to any finite-stateHMM
to find the most probable sequence of hidden states that couldhave generated a given observation
sequence. Since the input features can be associated with the observations and the unknown classes
with the hidden states, one can use the Viterbi algorithm to classify any input vector to its most
probable class. Application ofHMMs for classification and anomaly detection has been quite popu-
lar in the intrusion detection community[Lane, 1999; Yeung and Ding, 2003; Ourstonet al., 2003;
Wright et al., 2004].

In [Yeung and Ding, 2003], the effectiveness of dynamic and static models for intrusion detection
were compared in an empirical study. In particular, the study examined the dynamic and static mod-
els’ performance on detecting intrusions from program data(based on system calls) and from user
data (based on shell commands). The dynamic model is represented byHMMs, trained on data corre-
sponding to normal behavior. In this dynamic framework, observations with low likelihood values,
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in respect to the model, are associated as intrusions. For the static model, frequency counting of
event occurrences is used to estimate the frequency distribution that characterizes normal behavior.
In this static framework, the criterion for an intrusion is if the cross entropy between two frequency
distributions, in respect to the model, exceeds a given threshold. The clear difference between the
two models is that the static one does not take into account the order in which events occur, while the
dynamic one does incorporate this information as part of theHMM . Like [Yeung and Chow, 2002],
novelty detection is formulated as a hypothesis test and theperformance metric is measured in terms
of the true acceptance rate (TAR) and the true detection rate (TDR). (See Subsection 5.1 for details.)

The two modelling approaches were tested on two different types of intrusion data: the system call
data sets from the University of New Mexico[Forrest and Hofmeyr, 1998] and the shell command
data sets from the University of California at Irvine[Newmanet al., 1998]. On the first set of
data, the dynamic models showed superior performance, probably due to the temporal dependencies
between system calls. But on the second set of data, the dynamic models were outperformed by the
static models. (Extensive results are presented in[Yeung and Ding, 2003], please refer for details.)
Thus, it was inferred that temporal dependencies in shell command sequences may not be very useful
and could potentially be a noisy feature that deters detection. As a result, this study suggests that
HMMs should be used only for applications with strong temporal dependencies.

The observation thatHMMs are well-suited for modelling of sequential processes is supported by
[Ourstonet al., 2003], in whichHMMs were applied to detecting multi-stage network attacks. These
attacks typically span an extended period of time and are composed of multiple steps in which
actions may interchange within each step. The requirement for interchangeable actions allows the
system to model random or deceptive behavior on the part of the perpetrator, who might attempt to
mask his or her actions by random changes in the action sequence. Due to the sequential nature of
this domain, it makes intuitive sense to use a temporal modellike an HMM , because the order of
actions that constitute an attack provides invaluable information about the nature of the attack.

The experiments were conducted on a set of in-house network sensor data, in which a semi-automatic
procedure was used to categorize the data into classes defined by subject experts. Each training
example consists of an alert sequence, ordered temporally,that occurred over a 24-hour period. A
comparison was made between theHMM approach, a decision tree algorithm and a neural network,
as shown in Figure 22. The performance metric was the fraction of test examples that were correctly
classified.

Figure 22: The detection performance, defined as the fraction of test examples that were correctly
classified, as a function of the number of training examples.C4.5 refers to the decision tree approach
andNN refers to the neural network approach. Reproduced from[Ourstonet al., 2003].

In Table 7, the confusion matrix and the precision, recall and F-measure statistics are shown. The
confusion matrix displays the probability that a test example from a particular class is assigned to the
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Table 7: The results of the experiment expressed as a confusion matrix and statistics of precision,
recall and F-measure. Reproduced from[Ourstonet al., 2003].

another output class. The diagonal of the confusion matrix shows the probability that a test example
is correctly assigned to its class. Precision, recall and F-measure are functions of the true positives
(tp), false positives (fp) and false negatives (fn), as follows:

Precision= P =
tp

tp+ fp
, Recall= R =

fp

tp+ fp
, F-measure=

1

α 1
P + (1 − α) 1

R

(23)

wheretp correspond to the number of correctly identified intrusions, fp correspond to the number
of erroneously identified intrusions, andfn correspond to the number of instrusions missed by the
detection system. The parameterα was set to 0.5 to allow for equal weighting between precision
and recall. In general, the precision, recall and F-measurevalues show relatively good performance,
except for classes where with training and testing data are insufficient. To quantify the value of
extra training data, experiments were run with different number of training examples, and the per-
formance, in terms ofROC curves and the area under these curves, are presented in Figures 23 and
24. As expected, it can be seen that detection generally improves with more training data.

5.5 Dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) [Dean and Kanazawa, 1989] are compact representations of
Markov processes. Like anHMM , a DBN is a graphical model, where state variables are represented
as nodes and causal influences between variables are represented as arrows between nodes. But in
contrast to anHMM where parameters are defined over the entire stateSt, each nodeSt in a DBN is
associated with a conditional probability distributionp(St|Pa(St)) that encapsulates the conditional
probability of that variable given itsparentsPa(St). (A variable’s parents are the subset of the state
variables that affects that variable.) Thus,DBNs generalizeHMMs in thatDBNs exploit conditional
independencies between state variables to represent the transition model and the observation model
in a factored manner, as a product of lower-dimensional probability distributions that correspond to
the local dynamics:

p(St|St−1) =
∏

i

p(Si,t|Pa(Si,t)) (24)

p(Yt|St) =
∏

j

p(Yj,t|Pa(Yj,t)) (25)
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Figure 23: Detection performance, expressed asROC curves, for training data of different sizes. The
results presented are from the testing data for class 1. Reproduced from[Ourstonet al., 2003].

Figure 24: Detection performance, expressed as area under the ROC curves, for training data of
different sizes. Classes with insufficient testing data arenot shown. Reproduced from[Ourstonet
al., 2003].
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wherei is the index over the state variables andj is the index over the observation variables. [For a
detailed description ofDBNs, please refer to the companion survey on Bayesian models for temporal
processes.]

The use ofDBNs is quite popular for modelling temporal processes in applications of fault detection
and diagnosis. In these applications, the stateSt is often augmented to include fault variablesZt

that denote the absence or presence of different faults. Since the presence of a fault affects how the
system behaves, this causal effect is represented graphically by the arrow from the fault variables
Zt to the system variablesVt, shown graphically in Figure 25. Note that, in this framework, the
observation variablesY take on the role of the input featuresX, and the fault variablesZ now
represent the output classes. The variablesV can be interpreted as auxiliary random variables that
model other aspects of the system, which may aid in clarifying the relationship betweenY andZ.

t

Vt

YtYt−1

Vt−1

Zt−1 Z

Figure 25: An exampleDBN of a hybrid-state system that includes fault variables. In this example,
the fault variablesZt are discrete-state (shown as square nodes), while the system variablesVt and
the observation variablesYt are continuous-state (shown as circular nodes).Vt is observed through
the variableYt, whose measurements may be affected in the presence of a fault, thus the arrow
going fromZt to Yt.

In this modelling paradigm, the state contains both the system and fault variables, i.e.,St =
{Vt,Zt}. From the history of values forYt (the observed variables), the probability distribution
P (St|y1:t) is estimated using standard state estimation techniques. FromP (St|y1:t), the most prob-
able fault statesz (in respect toP (Zt|y1:t)) are identified and are presented to an analyst for the
proper diagnosis of the system.

Under this paradigm of system modelling,[Lerner et al., 2000] have shown success with using
hybrid-stateDBNs for plant modelling and fault diagnosis. In this work, aDBN model of a multi-
tank system was constructed from the specifications given ina temporal causal graph. TheDBN
model contained fault variables that represent:

• Measurement faults, which occur when a sensor fails, causing measurements to become
extremely noisy.

• Burst faults, which occur when a pipe bursts, causing the pipe’s resistance to change
abruptly to some unknown value.

• Drift faults, which occur as a result of normal wear-and-tear on a pipe, in which the pipe’s
resistance may gradually drift to a non-calibrated value.

The entire system consists of five tanks connected in sequence by pipes. Fluid exchanges from one
tank to a connecting tank occur spontaneously when the fluid level in one tank exceeds the height
of the connecting pipe, as shown in the schematic from the toppart of Figure 27. A fragment
of the system’sDBN model is presented in Figure 26, which shows the connectionsbetween the
continuous system variables and the discrete fault variables (shown asD for burst/drift faults and
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E for measurement faults) for a system of two tanks. For faultsthat persist over time, such as drift
faults, the fault variableDt will be dependent onDt−1, its copy at timet− 1, as shown graphically
by the arrow fromDt−1 toDt.

Figure 26: DBN of a two-tank system. The fault variables are denoted byD andE. Reproduced
from [Lerneret al., 2000].

At any point in time, the number of different faults that can occur is227. As a result, approximate
inference was performed on theDBN model, where the model was decomposed into 5 subsystems
and each tank comprises a subsystem. Nonetheless, to detectmomentary faults, whose direct effects
are not observable upon its onset but are only observable after a short delay, asmoothingprocedure
was also required. In this inference procedure,P (Zt|y1:t+τ ) is used instead ofP (Zt|y1:t) for fault
detection. The intuition is that, by taking into account observations that occurτ time stepsafter the
onset of the faultsZt, there should be more evidence to support the presence of these faults and thus
detection rate should be improved. The empirical results from this study supports this intuition, as
shown by the remarkable state estimation of the hidden variable “Conductance”, as shown in Figure
27. Only the state estimation results are shown because the state estimation performance is directly
related to fault detection performance. Faults affect the system behavior, and as a result, if the faults
were not promptly detected, one would see errors in the stateestimate.

The experiment was run on the full 5-tank system and the observations were generated from a
handcrafted scenario where many different and multiple faults were injected between time 5 and
25. To illustrate the improvement that smoothing brings to the detection accuracy, we examine a
particular fault, as presented in[Lerneret al., 2000]. At time t = 5, a drift fault was introduced to
the variableR23. Upon its onset, the probability for a drift fault was only 0.012%. At timet = 6, the
probability jumped to 71.7%, and was further increased to 99.9% after the smoothing procedure. At
this point, the algorithm had correctly detected this faultand maintained a high probability until the
effects of this drift wore off. Thus, this study demonstrates thatDBNs are useful in fault diagnosis,
and the smoothing procedure, combined with the subsystem approximations, shows much success
in tracking a complex system, in the presence of faults with asmall number of measurements.

In addition to fault diagnosis,DBNs have also been applied to the emergent field of privacy intrusion
detection[An et al., 2006]. Privacy intrusion is the act of illegitate disclosure or general misuse
of private data by human agents who are entrusted with this sensitive information (e.g., employees
from a government’s revenue service or employees from a medical laboratory). With the growth of
information technology, most business organizations collect private information about their clients
and it is the responsibility of each organization to monitorand to detect possible misuses of private
data by its agents. While privacy intrusion detection has been implemented as comparing the agent’s
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Figure 27: Schematic of the five-tank system (top) and the fault diagnosis results (bottom). Repro-
duced from[Lerneret al., 2000].

behavior against his or her profile of normal behavior, this is not sufficient for misuse detection,
because simply tracking the amount of time or the frequency in which an agent accesses a particular
information database can lead to many false alarms, since the agent may have legitimate work-
related reasons to do so. As a result, this study appliedDBNs to combine various domain-specific
features to establish a measure for thedegree of suspiciousnessfor an intrusion.

In general, this is a sensible approach because the activities of an agent constitutes a stochastic
process. The agent may be assigned a task that takes a prolonged period of time and the actions
taken to fulfill this task are likely to be causally related. The study presented aDBN (shown in Figure
28) that was tailored for a government’s revenue service, although the same modelling paradigm can
be adapted for other industries.

In Figure 28, each box contains the random variables that arespecific to one time slice. In each
slice, the variables are defined as follows:

• F d: the usage frequency of databases

• F r: the usage frequency of records

• T r: the amount of time spent on records

• M r: indication for modification of records

• Tk: type of task performed (audit or collection/delivery)

• Intr: indication for intrusion of privacy

• Hrs: indication of whether work was performed during business hours

• A r: the amount of records
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Figure 28: ADBN for privacy intrusion detection. Reproduced from[An et al., 2006].

• T d: the amount of time spent on databases

The arrow fromTk0 toTk1 represents the evolution of the agent’s tasks and the arrow fromIntru0
to Intru1 represents the evolution of the agent’s privacy intrusion.In this model, it is assumed
that the agent will be more likely to intrude if he or she is engaging in intrusive activities currently.
Analogously, the longer an agent refrains from intrusive activities, the less likely the agent will
intrude in the current time slice.

The study verified theDBN by commonsense validation through probable scenarios. Probably due
to sensivity of real-life data, no actual detection resultswere presented. Nonetheless, the approach
outlined in this study is quite applicable for intrusion detection, especially if the attack involves the
theft of large amount of private data. Moreover, if a large amount of data being accessed by an agent
is irrelevant to the agent’s job, theDBN will perform especially well because irrelevancy is directly
modelled into theDBN.

Lastly, we examine a recent application ofDBNs for traffic incident detection[Singliar and
Hauskrecht, 2006]. Traffic incident detection is an important practical problem because the cost
of highway accidents can be significantly reduced by their prompt detection. The study examined
the performance of simple univariate detectors that performed thresholding on each feature, and
compared the combination of these simple detectors to a support vector machine (SVM) (please re-
fer to Subsection 4.2 for details). TheSVM method was chosen becauseSVMs generalize the linear
discriminators implemented by the thresholding detectors. The algorithms were evaluated on real-
life traffic data collected from the most accident-prone segment of a highway in Pittsburg. The data
consisted of roadway statistics, such as the average speed,the volume (number of passing vehicles)
and occupancy (the traffic density), collected over a periodthat ranges from 30 seconds to 5 minutes.

It was found that anSVM approach generally outperforms the benchmark detection algorithm, the
CaliforniaTSC-2 model. TheTSC-2 model uses a sequence of thresholds to determine the differences
and proportions between lane occupancy from one time step tothe next. Empirically, the benchmark
model could detect only a third of the incidents at best. Compared to theSVM model, theTSC-2
typically resulted in lowerROC AUC (area under the Receiver Operator Characteristic curve) values.
But at low false alarm rates,TSC-2 outperformed theSVM, due to the support from evidence in the
last time step. As a result, a persistence check was incorporated as part of theSVM, which increased
its performance dramatically, as shown in Figure 29.

This suggests that a temporal framework, in which a detectoris “dynamized”, might more appro-
priate for this problem domain. As a result, aDBN model (shown in Figure 30) was proposed. This
model contains a single hidden discrete-state variableC (synonymous with the unknown class) and
a number of conditionally independent univariate Gaussianobservation variablesO = O1, ..., On.
In addition, there is also a binary observation variableI, which is the incident state as observed
by the traffic management center. Following our notation, the conditional distributionp(It|Ct) is
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Figure 29: Comparison ofSVM and the benchmark detector at low false alarm rates. The leftplots
are shown as detection rate (y-axis) vs. false positive rate (x-axis). The right plots areROC curves,
shown as the true positivity probability orsensitivity(y-axis) vs. the false positive probability de-
fined by one minus thespecificity(x-axis). Plots (a) and (b) show the performance of the benchmark
detector, the CaliforniaTSC-2. Plots (c) and (d) show the performance of theSVM. Plots (e) and
(f) show the performance of the improvedSVM that includes a persistence check, in which an inci-
dent must be detected in two consecutive time points before an alarm is raised. Reproduced from
[Singliar and Hauskrecht, 2006].
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handcrafted (see[Singliar and Hauskrecht, 2006] for details) while the conditional probability dis-
tributions{p(Oi,t|Ct)}

n
i=1 are learned from data. An alarm is triggered at timet if

p(Ct = “accident effect buildup”|O1:t, I1:t) + p(Ct = “accident steady state”|O1:t, I1:t) ≥ α
(26)

whereα is some preset threshold.

The performance for theDBN-based approach is shown in Figure 31. Unfortunately, theDBN ap-
proach only achieved aAUC ROC of 0.568381, compared to the 0.810531 that was achieved by the
SVM. This underperformance might be attributed to the fact thatthe structure of theDBN might
not be the best fit for the data. With a more complexDBN model, performance can be improved.
Nonetheless, this work paved the way for usingDBNs in this direction of anomaly detection.

Figure 30: ADBN for traffic incident detection. Reproduced from[Singliar and Hauskrecht, 2006].

Figure 31: The performance of theDBN-based detector. TheDBN used as observations the traffic
sensors’ measurements, as well as their differences and proportions. Reproduced from[Singliar and
Hauskrecht, 2006].

6 Conclusion

In this survey, we presented an overview of popular discriminative and generative methods that have
been applied to applications of classification and anomaly detection. Each approach—discriminative
or generative—has its own advantages and disadvantages. The major trade-offs between the two
approaches are as follows:
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• Generative models tend to be biased towards those that maximize the likelihood of training
data while the discriminative models are free from bias errors due to any misrepresentation
of the input distribution.

• Generative models usually offer more insights about the structure of the system while dis-
criminative models can be hard to interpret, as most treat the system dynamics as a complete
black box.

• Discriminative models require more training data for the parameters to converge. As a
result, in the case of sparse data and a reasonable amount of domain knowledge, it might
make more sense to use generative models.

Further empirical comparisons can be found in:

• [Chanet al., 2002]: in which neural networks, support vector machines, linear/quadratic
discriminant analysis, Parzen windows, mixture of Gaussians, and mixture of generalized
Gaussians are compared in a case study for glaucoma diagnosis;

• [Ulusoy and Bishop, 2005]: in which a discriminative model (based on logistic regression)
and a generative model (based on mixture of Gaussians) are compared in the task of patch
labelling and object recognition on weakly labelled data ofanimal pictures, as shown in
Figure 32;

• [Pernkopf and Bilmes, 2005]: in which discriminative and generative parameter learning
on both discriminatively and generatively structured Bayesian network classifiers are com-
pared on a variety of benchmark data sets from[Newmanet al., 1998] and[Kohavi and
John, 1997].

In addition, recent developments in hybridizing the two approaches have shown promising results
over either one of the methods.[Bouchard and Triggs, 2004] presents a simple way of combining the
two methods by interpolating linearly between the discriminative and generative objective functions
during parameter learning.[Jaakkola and Haussler, 1998] combines the two methods by using a
SVM as the basis for the discriminative classifier, but derivingthe kernel functions from a generative
model. [Rainaet al., 2003] presents a truly hybrid model whereby some parameters are trained to
maximize the generative likelihood while other parametersare discriminatively trained to maximize
the conditional likelihood. As data become more high-dimensional and complex, it is clear that one
single method will not be sufficient and that an adaptive hybridization scheme will prove to be useful
in the field of anomaly detection of dynamic processes. It is our hope that this survey will be able to
facilitate and advocate future developments in this area.
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tion. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,Advances in Neural Information Processing
Systems 17 (NIPS), pages 1073–1080, Cambridge, MA, 2005. MIT Press.

[Pernkopf and Bilmes, 2005] Franz Pernkopf and Jeff Bilmes. Discriminative versus generative parameter and
structure learning of bayesian network classifiers. InInternational Conference on Machine Learning 22
(ICML), pages 657–664, 2005.

[Rabiner, 1989] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition.Proc. of IEEE, 77(2):257–286, February 1989.

[Rainaet al., 2003] Rajat Raina, Yirong Shen, Andrew Y. Ng, and Andrew McCallum.Classification with
hybrid generative /discriminative models. InAdvances in Neural Information Processing Systems 16 (NIPS),
2003.

[Ramaswamyet al., 2000] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for
mining outliers from large data sets. InProc. of ACM SIGMOD International Conference on Management
of Data, 2000.

[Reynolds and Rose, 1995] Douglas A. Reynolds and Richard C. Rose. Robust text-independent speaker iden-
tification using gaussian mixture speaker models.IEEE Transactions on Speech and Audio Processing,
3(1):72–83, January 1995.

[Ryanet al., 1998] Jake Ryan, Meng-Jang Lin, and Risto Miikkulainen. Intrusion detection with neural net-
works. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors,Advances in Neural Information
Processing Systems, volume 10. The MIT Press, 1998.

[Schölkopfet al., 2000] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. Platt. Support
vector method for novelty detection. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors,Advances in
Neural Information Processing Systems 12 (NIPS), pages 582–588, Cambridge, MA, 2000. MIT Press.

[Singhet al., 2000] S. Singh, M. Markou, and J. Haddon. Detection of new image objects in video sequences
using neural networks. InProc. of the SPIE conference on Applications of Artificial Neural Networks in
Image Processing, pages 204–213, January 2000.

[Singliar and Hauskrecht, 2006] Tomas Singliar and Milos Hauskrecht. Towards a learning traffic incident
detection system. InProc. of Workshop on Machine Learning for Surveillance and Event Detection, Inter-
national Conference on Machine Learning, 2006.

[Steinwartet al., 2005] Ingo Steinwart, Don Hush, and Clint Scovel. A classificationframework for anomaly
detection.Journal of Machine Learning Research, 6:211–232, 2005.

[Tarassenko, 1995] L. Tarassenko. Novelty detection for the identification of masses in mammograms. In
Proc. of IEEE International Conference on Artificial NeuralNetworks, volume 4, pages 442–447, 1995.

[Ulusoy and Bishop, 2005] I. Ulusoy and C. M. Bishop. Comparison of generative and discriminative tech-
niques for object detection and classification. In C. S. J. Ponce, M. Herbert, and A. Zisserman, editors,Proc.
of Sicily Workshop on Object Recognition, 2005.

[Viterbi, 1967] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, 13:260–269, 1967.

[Williams and Nayak, 1996] B. Williams and P. Nayak. A model-based approach to reactiveself-configuring
systems. InProc. of the 13th AAAI and the 8th IAAI, 1996.

[Wright et al., 2004] Charles Wright, Fabian Monrose, and Gerald M. Masson. Hmm profiles for network
traffic classification. InProc. of ACM workshop on visualization and data mining for computer security,
pages 9–15, New York, NY, USA, 2004. ACM Press.

[Yeung and Chow, 2002] Dit-Yan Yeung and Calvin Chow. Parzen-window network intrusion detectors.Proc.
International Conference on Pattern Recognition, 4:40385, 2002.

[Yeung and Ding, 2003] Dit-Yan Yeung and Yuxin Ding. Host-based intrusion detection using dynamic and
static behavioral models.Pattern Recognition, 36(1):229–243, 2003.

38


