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Abstract

This survey defines the problem of anomaly detection andiges\an overview
of existing methods. The methods are categorized into tvneig classesgen-
erativeanddiscriminative A generative approach involves building a model that
represents the joint distribution of the input features #redoutput labels of sys-
tem behavior (e.g., normal or anomalous) then applies thdeirto formulate a
decision rule for detecting anomalies. On the other handseithinative ap-
proach aims directly to find the decision rule, with the sewdllerror rate, that
distinguishes between normal and anomalous behavior. &alr approach, we
will give an overview of popular techniques and provide refiees to state-of-
the-art applications.

1 Introduction

The goal of anomaly detection is to identify the onset oftfaolr novel system behavior, to char-
acterize the nature of such behavior (i.e., benign or nml&) and to propose possible causes or
correlated factors that may be of use to the analyst who gndising the system. In many practical
applications, it is especially important to distinguishvieeen benign faults (due to unintentional
causes, such as natural wear-and-tear of physical comi)reamd malicious faults (due to inten-
tional cases, such as illegitimate intrusions into a senete/ork system), since the nature of the
fault directly affects the type of recovery actions to béiaed by the analyst. In general, anomaly
detection is a statistical learning problem, in which thekta to train a classifier with knowledge of
normalbehavior to distinguish between abnormabdaomalousbehavior.

Anomaly detection is a broad research topic that has indpiteng history of innovation from dif-
ferent research communities (e.g., signal processinghimadearning, statistics). Most algorithms
that stemmed from this work have either been custom-talltwespecific domains or have restric-
tive assumptions. In general, it has been realized in methiat anomaly detection is an extremely
challenging task, where different paradigms of detectaremes have been shown to perform well
on different data. Thus, it is difficult and almost impossit choose one single method to address
the myriad of challenges faced by general real-world apfibos.

The difficulty of these challenges is strongly correlatethviine statistical properties of the data, as
well as the amount of information that is available aboutdbmain. In particular, the applicability
of a particular approach will depend on the following:

e The availability of domain knowledge about the system’séwédr under normal and
anomalous operating modes, i.e., is there enough infoomadibuild models of the system
under different modes?

e The availability of data and whether they are labelled aticgrto the corresponding modes
of system behavior, i.e., is there enough data to learn tequade models in the dearth of
domain knowledge?



e The applicability of domain knowledge over time, i.e., haliable is this knowledge and
how stringent is the need to update our models over time?

Depending on the various degrees of available data and despaicific knowledge, different meth-
ods have been applied to tackle the problem of anomaly detecthese methods are categorized
into two main classediscriminativeapproaches angenerativeapproaches.

In discriminative methods, the focus is to optimize a decisule that classifies data into categories
that correspond to normal or abnormal modes of system behaio effort is made in trying

to model the causal relationships between the data and ttierlyimg system process. On the
other hand, the focus of generative methad® learn a model that describes the system process.
With a generative model, one can interpret the system andratahd the causality between the
hidden system state and its observed behavior. This is itrasirto discriminative methods, which
treat the underlying system as a black box. However, sincanpeters for generative models are
often chosen to maximize the likelihood of the data, thesdetsowill generally be less optimized
for the classification task (of anomaly detection) at handnétheless, depending on the specific
application, one approach may be better suited to a paatideimain, as we will see in later sections.

In Section 3, we lay the mathematical foundations for the@hdehind discriminative and gen-
erative classifiers, and describe their qualitative défferes. In Section 4, we explain a popular
subset of methods that fall under the category of discritiieapproaches and provide references
for interesting applications that utilize such methodsSéttion 5, we do the same for generative
approaches. Finally, we summarize the tradeoffs betweetnwh approaches and provide references
to hybridization attempts in Section 6. For the rest of this/sy, the term&nomaly detectioand
novelty detectiomill be used interchangeably.

2 Notation

In this section, we introduce the notation that will be usedur discourse. We use uppercase letters
to denote random variables and lowercase letters to delmeiteinstantiations. For example, given
a binary variableX € {0,1}, X can either take on the value= 0 orz = 1.

We use boldface when referring to a collection or set of siniiems. For example, givehvariables
{X1, ..., X4}, the collection of these variables is referred toXas= {Xi,..., X4}. We also use
boldface for vectors, as vectors are usually the colleaifanore than one element.

In general, superscripts are often used to index a spectficuaant from a collection of data points.
For example, a set of training data may consisf\oflata vectors{x(V), ..., x(™)}. Then!" data

vector is denoted by and itsit element is denoted bg(z(."). Note thatxz(.") is not represented
by a boldface letter because it is a single element instead/ettor.

In addition, we use(-) to denote probability densities afit]-) to denote probability mass functions.

3 Discriminativevs. Generative

Anomaly detection is closely related to classificati@teinwartet al, 2004. In fact, one can
define the problem of anomaly detection as the act of clasgifgtata into the various categories
that correspond to normal and abnormal modes of system leeh#@s a result, we will examine
the differences between discriminative and generativeagmhes in terms of their classification
capabilities. As such, we will lay the mathematical thediryhese two approaches in the setting of
supervised classification.

In supervised classification, the input features is reprteseby the random vectd and its output
label is represented by the random variablé/Nhile X can be real- or discrete-valuedjs assumed

to be discrete and takes on finite values that corresponé tiffferent classesX andC' are derived
from an unknown probability distributiopn(X, C'). Generative classification takes the approach of
approximating (X, C') using a parametric family of models, then applying Bayek ta compute
the class-conditional distribution3(C|X). Each new data vectort is then assigned to the most
probable labet in respect taP(C|X). The complementary approach of discriminative classifica-
tion is to directly find a classification rule with the smatlesror rate. In other words, this approach



learnsP(C|X) from the data without first estimating the joint distributip(X, C'). The obvious
difference with the discriminative approach is that it m@ke assumption about the input distribu-
tion p(X), while the generative approach makes indirect assumpliontX in its computation of
the joint distributionp(X, C') before computing the conditional distributid®C|X). Put another
way, the key difference is as follows: discriminative apgmrioes apply?(C' = k|X = x) to directly
discriminatethe valuek for any instance, while generativeapproaches estimaf(C = k|X = x)
from P(C = k) andp(X = x|C = k), the latter of which can be usedgenerateandom instances
x conditioned on a target labgl

We now examine more closely the mathematical relationséiwéen discriminative and generative
classifiers and we follow the discourse fr¢Bouchard and Triggs, 2004Assume that the training
data, {x(™), (™M V_ wherex(™ ¢ R? andc(™ ¢ {1,..., K}, are independent and identically
distributed according to some unknown distributie(X, C'). The goal is to comput®(C|X),
which would be used to devise a classification rule that caiegs new data with the least amount
of error. To do so, one must compute the class-conditioradiatility P(C' = k|X) for each class
k. For each clasg, p(X|C = k) is modelled by some distributiofy, with parameter9;,, and
P(C = k) is parametrized by the prior probabilip;. Altogether, the parameters for the joint
distribution are® = {ps,...,px,01,...,0k }. Assuming® is known, the classification task boils
down to assigning the new data veckoto the class: that maximizes

P fr (% 0k)
Zf:l pcfc(x§ 90)

Both generative and discriminative methodologies takeshime high-level approach. Their depar-
ture from one another lies in the estimationaaf

Po(C = kX =x) = 1)

Given data{x™, (™ }N_  the parameters of a generative classifier are chosen tanizxthe
likelihood of the data, as follows:

N
Oen = argmax Lgen(0) Where Leen(0) =Y logpem fum (x™;0) 2)
(C] _

In contrast, the parameters to a discriminative classifierchosen to minimize the classification
loss, which is approximated by L p;s., as follows:

N
A Petn feom (x();6)
Opise = argmax Lpis.(0) where Lp;.(0) = log 3)
© 7; Yoo Prfe(x();0)
OnceLp;s. is expanded, one can easily see its relationshM'
Lpisc(©) Z 10g P fuim (x5 0) — Z log Zpkfk ) ) (4)
n=1 n=1

LGen(0) Lx(0)

Thus, the difference betweefyp;,. and Lg., iS Lx, Which represents the log-likelihood of the
probability model over the input spagé. This explains the fact that generative models tend to be
biased towards those that maximize the likelihood of tragrdata while the discriminative models
are free from bias errors due to any misrepresentation ahthe distributionp(X).

To further illustrate the different flavors of the two appehas, we present a well-studied
discriminative-generative pair of classifiers: naive Baged logistic regression. (For details, see
[Mitchell, 2005.) Here, we assume that the parameters to the classifierdrasely estimated,
based on the procedure described above, and our goal iswtkkdifferent classification rules
associated with each classifier. The parameters to the Nayes classifier are the estimates to
the distributionsP(C') andp(X|C'), while the parameters to the logistic regression classifiethe
weights{w,, }¢,_,.

For simplicity, we assume that there are only two classes(i.€ {0, 1}. Given a new input vector
x"" = {x4,..., 24}, the naive Bayes classifier will assigfi¢ to the labek™*" that satisfies

new

" — argmax P(C = k) Hp(Xi =u12;|C =k) (5)



while logistic regression will assigx™c™ to ¢"¢* = 0 if

P(C = 0|X = x"ev)
P(C = 1]X = x"ev)

1 exp (wo + Z?:l wixi)
<
d
1+ eXP(wo + Zi:l U)i(Ei) 1+ exXp (’LU() + Z?:l wle)

(6)
which boils down to

d
1 < exp (wo + Z w#@) , (7

i=1

and toc"¢* = 1 otherwise. Comparing the two, one can see that the claggficailes are drasti-
cally different and thus this illustrates the differencepproach between generative and discrimi-
native classifiers.

In general, the generative approach will learn the best irfodé¢he joint distributionp(X, C') but

its conditional distributiorp(C|X) will result in a biased classifier unless an accurate model of
p(X) is used. Since the true distributigiX) is rarely known, the generative model will result in
some degree of bias and thus a discriminative classifiernsrgdly believed to be superior to its
generative counterpart. However, this long-held beliefrily partly true, agNg and Jordan, 2001
show in their empirical comparison of naive Bayes to logistigression. Their study confirms that
the naive Bayes model indeed has a higher asymptotic eraor Itigistic regression, but it also
reveals an interesting discovery: the Bayes model congeogés steady-state parameters at a much
faster rate. It is the dimension of the input vector, the naive Bayes modaleges with Glog d)
number of training examples, while logistic regressioruiegs O(d) number of training examples
for convergence. Thus, this suggests an optimal classificpblicy whereby one should first apply
the generative model, then switch to the discriminative eh@dhen there are sufficient data for the
discriminative learning to converge to a model of lower aptotic error.

Theoretical results and empirical results are givelNg and Jordan, 20910 support this hypoth-
esis. The experiments were performed on 15 datasets fromah®achine Learning repository
[Newmanet al,, 1999. Figure 1 shows the empirical results, where the asympttaigsification
error is plotted against the number of training examplegh&ilatasets are with continuous inputs
and seven are with discrete inputs, as labelled in the figlirwas found that in most cases, the
naive Bayes model did converge faster but to a model of highgmptotic error, compared to the
logistic regression model. The few exceptions to this olz@n were small datasets that did not
have enough training examples for logistic regression tovege to its optimal model of lower
asymptotic error.

4 Discriminative approaches

In many aspects, discriminative approaches can be intepees function fitting. GiverX, dis-
criminative approaches aim to learn a direct mapping froarinputX to the output label’, either
through the direct estimation of the class-conditionabgatality distribution P(C|X) or through
other methods that achieve minimal classification erroe ativantage of discriminative classifiers
is that they concentrate on finding the decision boundarysbparates the various classes of nor-
mal and anomalous system behaviors. As a result, compagsherative classifiers, discriminative
classifiers are usually more robust against outliers in #ta.dut as a result of this focus (solely on
the decision boundary), the rest of the space is generallyrégl. Thus, discriminative approaches
offer much less insights about the structure of the undeglgystem, which makes it difficult for
discriminative approaches to deal with missing data.

Popular discriminative approaches include logistic regian, linear/quadratic/regularized discrim-
inant analysis, random forests, distance-based discatioim support vector machines and tradi-
tional neural networks. In particular, this section foaige the last three methods. For each method,
we will provide a brief explanation and present a subset efcinrent literature that is especially
relevant to anomaly detection.
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4.1 Distance-based discrimination

In this subsection, we will introduce a variety of classgiand outlier detectors that uses the notion
of spatial distance to discriminate between normal and ahous feature vectors. (Normal feature
vectors are feature vectors that correspond to normalegaasomalous feature vectors are defined
similarly.) The distinction between classifiers and outlietectors is subtle, but primarily, classifiers
are trained in a supervised learning setting, where theitrgdata consist of labelled instances, i.e.,
{x(™ (N “while outlier detectors may employ clustering or dimensieduction techniques
that are trained in an unsupervised learning setting, wiierdraining data are unlabelled, i.e.,
{X(n)}gzl'

In addition, many outlier detection schemes are based ofollogving two assumptions about the

training data: The firstis that the training data contairesgd portion of normal feature vectors. The
second assumption is that the anomalous feature vectotseoqualitatively distinguished from the

normal feature vectors. With these two assumptions ofyrantd deviation from normal character-
istics, the anomalous feature vectors can be treated asrsuéind thus outlier detection algorithms
can be used to detect anomalies.

4.1.1 Nearest neighbor

The nearest neighbor classifier is one of the most commomwlgt oeethods for anomaly detection.
The intuition behind this algorithm is simple: feature \a@stthat are close together, in respect to
some distance metric, belong to the same class. The neaighbor classifier assumes labelled
training data{x(™), c(™}N_, and assigns the new instang&® to the same class as its closest
neighbor. A popular generalization of this method is thieearest neigborkfiN) classifier, where
thek nearest neighbor t"“* are used to determine its clags™. One way of determining*¢" is

by majority vote, where<* is assigned to the most common class among theighbors. Another
way is to weigh each neighbor’s vote as a function of its distetox™“", so that closer neighbors
may have higher influence on the vote than farther neighbbrshis weighted majority voting
scheme, the weights corresponding to each distinct cleassumnmed together art“® is assigned
to the class with the maximum weight.

The kNN approach has been applied with success to anomaly detatfibiao and Vemuri, 200R

In this work, thekNN classifier was used to detect network intrusions from traépsogram behav-
ior. This work leverages existing work in text categoriaatiand translates a program behavior into
a text format, wheré&NN can be used to classify between normal or intrusive behaSecifically,
the approach treats each system call as a “word” and a doleattsystem calls throughout program
execution as a “document”. The study first trainedkle! classifier using simulated data that were
free of attacks, in order to characterize normal behaviores instancex™¢" is characterized as an
anomaly (associated with an intrusive attack) if the averdigtance of it$ nearest neighbors falls
above a given threshold. Experiments were performed ondB80ARPA Intrusion Detection Sys-
tem Evaluation datfLincoln Laboratory, 1998 which include a large sample of computer attacks
embedded in normal background traffic. For a gikethe performance dfNN is measured using
the Receiver Operating Characteristko) curve, which plots the intrusion detection accuracy as
a function of the false positive probability. Figure 2 shalwe performance okNN for different
values ofk.

For smallk, the runtime forkNN is O(N) whereN is the number of computer processes in the
training data. As a resulkNN may not be efficient whelV is large. To improve UPO&NN , it
may be advantageous to combitteN with signature verificationwhich establishes a set of rules
or properties that correspond to a particular class. Theawgu version okNN learns new classes
that correspond to a subset of known malicious program behalable 1 shows its effectiveness
for detecting novel malicious behavior.

A nice theoretical property of the nearest-neighbor metisatiat, as the number of training ex-
amples tends to infinity, the error rate is never worse thaocetthe Bayes ratgCover and Hart,
1967. Despite this useful property, the use of nearest neigtsot always meaningful, as shown
theoretically and empirically ifBeyeret al, 1999. In general, one must make sure that the data
is spatially distributed in such a way that there is a cleatimition between the nearest and the
farthest neighbors for any typical input feature vectdt™. (In some literaturex™“* may also be
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Figure 2: Performance gfNN asrRoOC curves, which display the false positive rate vs. the attack
detection rate for different values bf Reproduced froniLiao and Vemuri, 200R

Table 1: Attack detection rate for tibaRPA data wherkNN is combined with signature verification.
Reproduced froniLiao and Vemuri, 200R

| Attack type | Instances | Detected | Detectionrate |

Known attacks 16 16 100%
Novel attacks 8 6 75%
Total 24 22 91.7%

referred to as thqueryvector.) As dimensionality increaseg!*”’s distance to its nearest neighbor
typically approaches the distance to its farthest neighbas few as 10-15 dimensions.

This phenomenon is confirmed by empirical results that aogvelin Figure 3, where the average
ratio of the farthest neighbor’s distancP {7/ AX) to the closest neighbor’s distancB /I N) is
plotted as a function of the data’s dimension (i.e., eacimitrg vector ism-dimensional). The
average is taken over 1000 query instances on syntheticsdtgaf one million tuples. The data
sets are generated by different probability distributioFtse line corresponding to “uniform” shows
the performance on a uniformly distributed data set. Sityilthe line corresponding to “recursive”
shows the performance for a data set where every pair of dilmesis correlated and every new
dimension has a larger variance. Lastly, the line corredimgrio “two degrees of freedom” shows
the performance for a data set generated from the weighte@stwo uniformly distributed random
variables. Formn = 1, the ratio% ~ 107, which provides quite a contrast between the closest
neighbor and the farthest neighbor. Butrass increased, the contrast becomes insignificant, as

seen by the reduction if324Xs orders of magnitude.

To increase the effectiveness of the nearest-neighboraddtir high dimensions, an interactive
system was proposed [Aggarwal, 2002 This work describes a human-computer interactive sys-
tem for high-dimensional nearest neighbor search, whettebhigh-dimensional training data are
projected onto carefully chosen lower-dimensional regmégions, with the hopes that these lower-
dimensional representations better capture meaninghtigaships between the training data and
the query vectok™“*. Projections are chosen based on how well the projectidimdisshes the
(lower dimensional) clusters containisg < from the rest of the data. After the computer finds
these projections, these projections are presented kigoahe user, who can then express his or
her preferences about these projections so that the mdaimegs ofx™“"’s nearest neighbors can
be tailored from the user’s perspective. The motivatiorttits approach is that repeated feedback
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Figure 3: Performance of nearest neighbor for differentiafa distributed sets of data. For each
distribution, the ratio of the farthest neighbor’s distaa the closest neighbor’s distance is plotted
as a function of the data’s dimension. Reproduced fiBayeret al, 1999.

from the user over several iterations should allow the systefind a set of statistically significant
and meaningful neighbors.

This interactive system was tested on a number of real dagafreen theuc! machine learning
repository[Newmanet al., 1999. In particular, a comparison was made between the propaosed i
teractive nearest-neighbor algorithm and the standallddfimensional) nearest-neighbor algorithm,
on the ionosphere and segmentation data sets fromaheepository. The experiment measured the
nearest neighbor classification accuracy for 10 query vecithe experimental results are shown in
Table 2, where the performance of the interactive systeiinas/s to be clearly superior.

Table 2: Classification accuracy for the standard neardghber algorithm and the proposed
interactive version of the nearest neighbor algorithm.rBepced fron{Aggarwal, 2002

| Data set (dimensionality)| Accuracy (StandardiN) | Accuracy (Interactivenn) |

lonosphere (34) 71% 86%
Segmentation (19) 61% 83%

4.1.2 Distance-based outlier detectors

Alternatively, one can avoid the need for labelled trainitaga by using outlier detection methods.
In these methods, the anomalies are treated as outliers teatining data and are identified purely
by their relative spatial location to the other vectors ia training data.

In [Ramaswamyet al, 2004, the distance of a feature vector to 4 nearest neighbor is used to

define the notion of distance-based outliers. In this fraotéweach vector in the data set is ranked
on the basis of its distance to ¥ nearest neighbor and the highest ranked vectors are identified
as outliers. This heuristic makes intuitive sense becadwesgdctors that are ranked the highest will
not be clustered as densely as those in the lower ranks, asdtlie highest ranked vectors are
outliers relative to the rest of data.

Let D*(x) denote the distance frornto its kth nearest neighbor. While standard algorithms (such as
nested-loop and index-based algorithms) can be used toutedp (x(™) for eachx(™ in the data
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set{x(™}_ , these algorithms are computationally expensive, reqgiais much as @NQ) com-
putations. To address this inefficiency, a partition-baggdrithm is also presented [Ramaswamy

et al, 2004. This partition-based algorithm employs a divide-andereer approach, whereby it
partitions the data set into disjoint subsets then pruntequartitions that are determined to be free
of outliers. Thus, much fewer computations fof (x) are needed, resulting in substantial speedup
in runtime. The standard algorithms and the proposed artiiased algorithm were tested on a
synthetic data set that contained 100 hyper-sphericalesksf uniformly distributed data, along
with 1000 uniformly scattered outliers. In Figure 4, thetione for each algorithm is plotted against
the number of data vectorg, the neighbor index, and the dimension of the data vector.
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Figure 4: Comparison of the nested-loop, the index-basedittze proposed partition-based algo-
rithms. The runtime for each algorithm is plotted againstriobmber of data vectorg, the neighbor
indexk, and the dimension of the data vector. In the lower left gla,nested-loop method was too
slow to be competitive with the other algorithms and wasdfare omitted. Instead, the partition-
based algorithm was ran with different number of partitiand the results were presented instead.
Reproduced fronlRamaswamt al.,, 2004.

From Figure 4, one can see that the partition-based algoighmuch faster than the standard al-
gorithms, and scales well with respect to both the size amédsion of the data set. In addition to
this set of experiments on synthetic data, the partitiosedalgorithm was also tested on a real-life
NBA (National Basketball Association) database, where pddaiglayers were flagged as outliers,
due to their dominance by a wide margin in a particular garaspgect.

In the same spirit of divide-and-conquinorr et al., 200d presents a similar approach whereby a
data vector is identified as an outlier if at least a fraciiaf the data set is located greater than a dis-
tanceD away. Such an outlier is denoted aBB( f, D) outlier. Again, the two simple algorithms of
index-based and nested-loop approaches were present@ttiiog theDB( f, D) outliers. To find

all DB(f, D) outliers in a data set, both algorithms have a worst-caselity of O (dN) where

d is the dimensionality andV is the size of the data set. An optimized cell-based alguor;itthat
scales linearly withV but exponentially withi, is presented. The idea is similar to that employed in



[Ramaswamyt al., 200d, where data vectors are partitioned into cells and outlieesletermined
on a cell-by-cell basis, rather than on a vector-by-vecasid This approach allows rapid pruning
of a large number of data vectors that cannot be outliersgtwigsults in significant reduction in
runtime. Experimental results indicate that this celldzhapproach outperforms the index-based
and nested-loop approaches fox 4. This method was also applied to three real-life applicetjo
which include analysis oNHL (National Hockey League) statistics, spatio-temporgettaries
from surveillance videos, and workers’ compensation eyglperformance data. Figure 5 shows a
subset of the results from the case study on detecting mittim surveillance videos. The outliers
were determined based on their differences in speed amdjectories between a pedestrian’s entry
and exit points. The results show that the idea of DB outlears be applied with success to detect
anomalies in spatio-temporal data.
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Figure 5: The results of anomaly detection in spatio-terapdata from surveillance videos. The
left plot shows the entire data set. The right plot shows th@realous trajectories detected using
the method of DB outliers. Reproduced frgknorr et al., 200d.

So far, we have only examined algorithms that treat the sfdieing an outlier as a binary property,
in that, a feature vectox is an outlier with 0% probability or 100% probability. But some
scenarios, it may be more meaningful to attributevith the degreeof being an outlier instead.
Such an approach was taken[Breuniget al, 2004, in which a new outlier detection approach,
based on the notion of tHecal outlier factor(LoOF), was proposed. TheoF measures the degree to
which each data vectaris an outlier, dependent on how isolate@ with respect to its surrounding
neighborhood. In contrast to tlienearest-neighbor algorithm, ther approach utilizes the density
of other points arouns rather than just the distances fronto its k£ closest neighbors.

TheLoF method is implemented as a two-step algorithm. For eachvéatarx, the first step finds
all neighboring vectors that are within distané(x) from x, and stores their actual distance from
x in a database. The second step computesdirs from this database. The complexity of the first
step is implementation-dependent and was reported to (€ 13z N) in [Breuniget al, 200d’s
implementation and the complexity of the second step (&Q whereN is the number of vectors
in the data set.

The LoF algorithm was tested on a synthetic 2-dimensional datarektveo real-life sports-related
data sets, one on hockey and another on soccer. The resuttsefeynthetic data set are shown
in Figure 6, where a clear graphical view for all the computed values is presented. Empirical
results for the real-life data sets also show that.the method can find meaningful outliers that are
otherwise undetected by existing approaches. This ob@mia confirmed by a comparison study
by [Lazerevicet al, 2003, where popular outlier detection methods, including the method,
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Figure 6: The local outlier factors for the data in the sytithdata set. Reproduced froiBreunig
etal, 200d.

were evaluated on the 1988\RPA Intrusion Detection System Evaluation data[¢éncoln Labo-
ratory, 1998. In this studyLoF was compared against:

e Nearest-neighbor: A feature vector is an outlier if theatise to its nearest neighbor ex-
ceeds a given threshold.

e Mahalanobis-distance-based: The mean and standardidevi@tthe training data is com-
puted. A feature vector is an outlier if the Mahalanobisatise to the mean of the training
data exceeds a given threshold.

e Unsupervised support vector machines: To be explainedlis&iiion 4.2

The results are presented Rsc curves in Figure 7, which shows thabr outperforms all other
methods in detecting network intrusions for theRPA data set.

ROC Curves for different outlier detection techniques ROC Curves for different outlier detection techniques
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Figure 7: Comparisons of different anomaly detection athors on bursty attacks (right) and on
single-connection attacks (left). Reproduced fifbrazerevicet al, 2003.
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4.2 Support vector machines

Aside from distance-based methods, support vector maghiage also been widely used for
anomaly detection, especially in the areas of intrusioea&n and medical diagnosis. In this
subsection, we will first explain the supervised version ubport vector machines, then briefly
discuss its unsupervised counterpart through an apmitati

Figure 8: The goal of &vM is to find the optimal hyperplane that has the maximal digtgdnam

the nearest training patterns. The support vectors (shevgolid dots) are those nearest patterns
that are fixed distance from the optimal hyperplane. Remreddrom Richard O. Duda, Peter E.
Hart and David G. StorkRattern Recognition(©2001 by John Wiley & Sons, Inc.

The objective of a support vector machirev{1) [Burges, 1998; Dudat al, 2001 is to define

a decision hyperplane that separates the different clagiieshe largest margin from the nearest
training examples. The support vectors, as shown and défirfédure 8, are the training examples
that define the optimal hyperplane, which forms the perpridi bisector of the support vectors.
In essence, the support vectors aim to represent the mostriafive patterns that allow one to best
distinguish between the different classes.

To define these support vectosy/Ms apply a transformation to the data so that the patterns+epr
sented by the data are linearly separable (i.e., can beatepary a hyperplane). This is possible
because nonlinearly-separable patterns can always bdowady separable in a sufficiently high-
dimensional representation. Thus, the data are mapped agmnpriate (non-linear) function to a
higher dimension and optimization is performed to find théral separating hyperplane.

SVM variants include hard-margswvms for separable classes, soft-margirvs for non-separable
classes and robustvmMs that generalize to noisy data. The ability to handle no&g @ important

in any detection or classification setting, especially sinciseless otleandata may be difficult or
expensive to obtain for real-world systems, where data redyetdlerived from noisy sensor readings
or may be mislabelled due to human/machine error. In addifar dynamic systems where normal
behavior may change over time, it is especially importantaio anomaly detection scheme to be
able to handle noisy data, since the labels assigned toréeatgtors during training may become
unreliable.

In[Hu et al, 2003, the standard and robust versionsweiv are compared to thie-nearest-neighbor
classifier £NN) [Liao and Vemuri, 200Ron clean and noisy data. The study used the I998A
Intrusion Detection System Evaluation data [sétcoln Laboratory, 1998 where a clean data set
and a noisy data set (see Table 3) were extracted for traamddesting.

The detection results are shown in Figure 9, where the paegnce of the robustvm, the standard
svM and thekNN classifier is expressed a&OcC curves over the clean and noisy data. On the
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Table 3: The clean and noisy data sets used ifkheet al, 2003 study. Reproduced frofiHu et
al., 2003.

| | Clean data | Noisy data |
300 normal processels 316 normal processels
Training (16 mislabelled)
28 intrusive processes 12 intrusive processes
Testing 5285 normal processes, 22 intrusive sessigns

clean data, the attack detection rate with zero false pesitite was 74.7% for robuswvm, 50%

for standardsvm and 13.6% forkNN , while 100% attack detection rate was attained with a false
positive rate of 3% for robustvm, 14.2% for standardvm and 8.6% forkNN . In particular, it
appears thakNN performed the worst and the robusim performed the best. On the noisy data,
the attack detection rate with zero false positive rate vigsé tor robustsvm and 54% for standard
svM, while 100% attack detection rate was attained with a fals&tipe rate of 8% for robust
svM and 100% for standarslvm (which is practically useless). The robwstm shows very minor
degradation in performance in the presence of noise, v#hile shows tremendous degradation.
kNN’s resilience to noise can be explained by the averagingittipgrforms on the test vectorls
nearest neighbors, which allows it to smooth out the impéttt@isolated noisy training examples.
Nonetheless, if the training examples were incorrectlgsifeed and the test vector happened to be
one of these incorrectly classified training examples, tivenkNN classifier would be unable to
detect the intrusive attack. In general, this study shows ribbustsvms are quite well suited for
anomaly detection in noisy data, because robwsts are not as prone to over-fitting the noise and
they also lead to faster runtime, due to the reduced numbsrmdort vectors.
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Figure 9: Performance of the robustMm, the standargvm and thekNN classifier is expressed as
ROC curves over the clean data (left) and the noisy data (rigteproduced froniHu et al,, 2003.

The svMs discussed so far are supervised methods, where one ashnaesilability of labelled
data{x(™) ¢(™}N_, for training purposes. However, in the absence of labeltd dr in the pres-
ence of highly unreliable labelled data, thensupervisednethods may be more desirable from
a practical standpoint. An unsupervised versiorsefis has been proposed b$cholkopfet al.,
200d. The high-level idea of the unsupervissdw is that it finds the region where the majority
of the data lies and associates these data as one class. Mmpé&eowent of these data is then con-
sidered as belonging to a separate class. This algorithnevedsated on thesps(United States
Postal Service) data sgtull, 1994 of handwritten digits, which contains 9298 digital imagés o
256 pixels, in which the last 2007 images were used as thegesr this empirical study. The top
20 outliers are shown in Figure 10. Below each digital imalye jtalic number is the output of the
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svM and the boldface number is the class label assigned to thgeinde one can see, these outliers
correspond to atypical examples that are especially diffiounatch to their representative digits.

AP21THSTES

=5139 =507 1 =458 0 =377 1 =282 7 =216 2 2003—1869 —1795 =162 0

4L LY3ION (&)

—1533 1436 —128 6 —123 0 —117 7 93 5-78 0 58 7 =32

Figure 10: The outliers identified by the unsuperviseth, ranked by the negative output of the
algorithm. Reproduced frofcholkopfet al., 200d.

A comparative study on the effectiveness of the unsupatdse and other distance-based outlier
detection algorithms in intrusion detection is presenteflazerevicet al, 2003. The results of
this study are presented previously in Figure 7. Aside frotrusion detection systemsyms have
also been applied with success to glaucoma diagihGsianet al.,, 2004.

4.3 Neural networks

A neural networl{Haykin, 1998; Dudat al, 2001 is a biologically-inspired method of compu-
tation based on an abstract representation of the brainlogoas to the brain, which consists of
a large number of highly interconnected network of neuranseural network consists of various
units that are organized in layers to simulate the learnioggss of the brain.

Like the brain, a neural network learns by example, wherén eiral network is trained for a
specific application through a learning process. This legrprocess can either be supervised or
unsupervised. In supervised learning, a set of labelleal{ddt), ¢(")}1V_, is processed by the neu-
ral network. For eack("), the neural network compares its classification outpagainst the true
labelc(™, and uses this error to finetune its parameters accordilmtpntrast, unsupervised learn-
ing uses a set of unlabelled dgta(™}_,. The process by which a neural network self-organizes
the data into different classes without the use of exteraiagls is known as self-organization or
adaptation. Generally, supervised learning is perfornfetine and unsupervised learning is per-
formed online. Neural networks are used extensively in alpmietection, due to their success in
pattern recognition and data classification. In this sutim@cwe focus on applications where the
neural networks are learned in a supervised manner.

The basic unit of a neural network is referred to aaron after the biological neuron that inspired
its model. Each neuron has one basic function: to emit a respof the weighted sum of its inputs.
The nature of the response depends oretttezation functiorof the neuron. Each neuron can have
a different activation function. But in practice, most n@us have the same activation function and
it is often chosen to be the logistic function.

A neural network consists of an input layer, a variable nunatb@idden layers, and an output layer
of neurons. Each layer can have a variable number of neundgtiisthe exception of the input layer,
which is usually constrained to have as many neurons as thengion of the input feature vector.
The input layer takes as input the data, which is in turn pssed by the hidden layer(s). The result
of this hidden layer processing is then passed on to the blatper, which outputs the classification
result. Figure 11 shows the basic structure of a three-lageral network.

Theoretically, a three-layer neural network can implenaamnt continuous function (either for den-
sity estimation or classification), given a sufficient numbghidden units and the proper model
parameters. However, the question of choosing the optimalah network structure for a particular
problem still remains somewhat of an art. (See Figure 12 f@rity of decision boundary that one
can implement with neural networks.) As a result, the desfgnneural network for any non-trivial
application may still require human experts who are adefteérart of neural networks.
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Figure 11: A fully-connected three-layer neural networkeTnput units represent the components
of an input feature vector. The hidden units represent akbtex that encapsulates the hidden
relationships between the input feature vector and itsespwnding output class. The output units
represent the output of the discriminant function that aieilees the output class to which the input
feature vector belongs. Reproduced from Richard O. DudterHe Hart and David G. Stork,
Pattern Recognition(©2001 by John Wiley & Sons, Inc.

Neural networks have been widely applied to anomaly detectPopular applications include in-
trusion detection systeniRyanet al,, 1994, handwriting recognitiofLeCunet al, 1994, image
sequence analysiSinghet al, 2000; Markou and Singh, 20D&nd medical diagnos[Jarassenko,
1995; Charet al, 2004. In the interest of space, we describe only a subset of thik.wo

In [Ryanet al,, 1994, a neural network was trained to detect network intrusi@set on anomalous
behaviors on the part of the individual users. This neurt/agk intrusion detectomNID for short,

is trained to identify computer users based on the commaegsssue during the day. At the end of
each dayNNID is run to detect any anomalies in the uers’ daily sessionndf@alies are detected,
then an investigation will be initiated to diagnose the edfas the anomalies. TheNID system is
based on a three-layer neural network, in which the inpugdapnsisted of 100 units, the hidden
layer consisted of 30 units and the output layer consistelDafnits, one for each of the ten users
that partook in this experiment. TihiiD system was built and tested on a machine at the University
of Texas at Austin, where data were collected from this maefor 12 days, which resulted in 89
data vectorsNNID was trained on 8 randomly chosen days of data (65 data vetodstested on
the remaining 4 days of data (24 data vectors). In an enviesnof 10 users\NID exhibited a 96%
detection accuracy rate with a false alarm rate of 7%. Thesalts confirmNNID’s promise as an
offline monitoring system for intrusion detection.

In [LeCunet al, 1994, a highly sophisticated neural network, consisting of aielrs, were devel-
oped for classifying handwritten digits from thsps(United States Postal Service) datalsill,
1994 of handwritten digits. This work leverages the idea thapshaecognition can be improved
by detecting and combining local features, and translaissdea into the architecture of the neural
network by constraining the connections in the first few taye be local, through the usefefature
maps Units on a feature map are constrained to perform the saeratipn on different parts of the
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Figure 12: A two-layer neural network can only classify be¢w two linearly separable classes. As
the number of layers to a neural network is increased, atrarity complex decision boundary can
be formed, which can be used to classify between multipldimesrly separable classes. Repro-
duced from Richard O. Duda, Peter E. Hart and David G. Steaktern Recognition(©2001 by
John Wiley & Sons, Inc.

image. Multiple feature maps extract different featuresrfithe same image, and are thus a neces-
sary component of this neural network. The structure of #heal network is shown in Figure 13,
where each hidden layer is labelled by an “H” label. Next tche'dd” label, “m@s x s” means that
the hidden layer is composedmafgroups of units, each group arranged istlays plane. Altogether,
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Figure 13: The architecture of the six-layer neural netwesd to classify handwritten digits from
theuspsdata set. Reproduced froheCunet al,, 199(.
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the neural network contains 4635 units, 98442 connectiod2&78 independent parameters. After
30 training passes on a training set of 7291 handwritteridagid 2549 printed digits, the neural
network achieved an error rate of 1.1% andntsE (mean of squared errors) of 0.017 on the training
data. When tested on the test set of 2007 handwritten digits780 printed characters, the neural
network achieved an error rate of 3.4% and thee of 0.024. The classification errors were solely
due to the mislabelling of the handwritten characters.

In [Singhet al,, 2004, neural networks were used in conjunction with clusteringlétect novel
objects in video sequences. During a test run, the trainethheetwork processes the test vectors.
Any test vectors, that result in a large discrepancy betwieeractual and the target outputs of the
neural networks, are associated with one or more new cla3$ese test vectors, that correspond
to one or more novel classes, are set aside in a bin. At thefethe test trial, the data in the bin is
clustered and any cluster that is found to be statisticatfgr@nt from any known class distributions
denotes a new class.

This algorithm was implemented using a three-layer newsbdaork, that contains 42 units in the
first layer, 175 units in the hidden layer and 4 units in the lager. The image data consists of
3777 samples extracted from regions (such as trees, gkasansl river reflecting the sky or trees).
Trials were conducted such that the training data constdteti classes but one, and the testing data
consisted of instances from the excluded class (not usediimrtg), along with a noisy version of
the training data. The results for detecting the class “Sky’ presented in Table 4. In this trial,
the “Sky” data are completely excluded from training and@rky used for testing. Table 4 shows
that the test data is classified with an accuracy of 79.6% mRr®e 136 test examples from the
“Sky” data, only 129 examples were correctly assigned tabiheor the clustering analysis. The
composition of the clusters (also shown in Table 4) were #ralyzed, and “Sky” was found to be
statistically different enough to be assigned a new class.

Table 4: The results of using neural network in conjunctiorciustering to detect novel objects
in video sequences. The left table shows the neural neteathfusion matrix and the bin
composition at the end of the test run. The right table shtmsctuster composition at the end of
clustering. Reproduced frobSinghet al, 200d.

G T S Rs Rt CLUSTER 1
G 1126 213 0 4 116 Grass Trees Sky Rs Rt
T 122 596 0 2 43 409 239 1 1 40
S 0 1 0 6 0 CLUSTER 2
Rs 1 0 0 223 0 Grass Trees Sky Rs Rt
Rt 24 25 0 0 224 51 28 0 0 4
U B CLUSTER3
Classification = 79.6% Grass Trees Sky Rs Rt
BIN 5 4 128 0 3
Grass Trees Sky Rs Rt
465 271 129 1 48

For a more extensive review of novelty detection literatbeed on neural networks, déé¢arkou
and Singh, 20083

5 Generative approaches

In contrast to discriminative approaches, generative aousttestimate (X |C') and P(C') for each
classC, then apply Bayes’ rule to compute the class-conditiongttihution P(C|X):

pX|C)P(C)
p(X)

Under this paradigm, the classification task is effectivegtuced to modelling the distributions

p(X|C) andp(C). In general, this approach requires the estimation of eefangmber of pa-

rameters. Since these parameters are estimated via maxikelinood, generative models are
usually less optimized for classification compared to tiseritininative models, which optimize the

P(C|X) = (8)
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classification error directly. Nonetheless, generativelet®are favored among the community of
model-based diagnodide Kleeret al., 1992; Williams and Nayak, 199®ecause generative mod-
els offer insights about the structure of the system and seéutiin providing causal explanations
for observed phenomena.

Given a set of observed data, a generative model relatedderved data to hidden variables that
might have caused the observed data. The observed datapaesarted by the feature vectors
{x(™}N_ and the hidden variables constitute the unknown claSse#n most cases, a generative
model may contain additional hidden variables that are béybe scope of the classes, but are
useful in improving the prediction between the input vesrand their output classe&s.) Under
this framework, an input feature vectaris interpreted as a noisy observation of some unknown
process in the system. This unknown process is assumed tchsetween different classes or
modesof behavior. Depending on the class under which the prosessriently operating, the
system will generate observations that are specific to thasc Thus, the class of system behavior
can be inferred through classifying the observations.

The goal of a generative classifier is to output the clasthat would have generated, with the
highest probability, the observation represented by thatifeature vectok. Thus, before classifi-
cation or anomaly detection can occur, a model of the systest be developed, by incorporating
prior information and using unsupervised learning on thaheilled training datdx(™ }\_,. Once
the modelM is developed, inference is performed @1 to computeP(C' = kX = x; M),

the probability of each clask conditional the input feature vectsr, with respect to the model
M. Classification boils down to simply choosing the class witie highest probability, i.e.,
¢* = argmax;, P(C = k|X = x; M). In essence, a generative model must capture the system
dynamics under each class or mode of behavior. On its ownpargtve model will not predict
the presence of new classes. Instead, one must apply plibptdsesholding, hypothesis testing or
other more sophisticated detection schemes, to the gemenabdels to detect possible emergence
of new classes.

In this section, we start off by presenting two complementaethods of density estimation that are
commonly used to create generative models. The first is goaoametric method known as Parzen
windows, while the other is a parametric method known as fliaddy mixture of Gaussians. The
second part of this section discusses more structuredseiaions used for generative modelling.
Before we discuss generative modelg@hporalprocesses, we will explain how state estimation
is related to anomaly detection, as state estimation playsaal part in the anomaly detection of
temporal processes. Lastly, we will examine popular mooflemporal processes, such as hidden
Markov models and dynamic Bayesian networks, and provitlgerces to recent work that has
applied these models for classification or anomaly detectio

5.1 Parzen windows

The Parzen windows algorithiDudaet al,, 2001 is an unsupervised method of non-parametric
density estimation and can be easily adapted for classificathis algorithm makes use okarnel
functionto interpolate the probability of the input space that is sigpported by the data. This
kernel function can be quite general, as long as it satisfieptoperties for a valid probability
density function.

Given a kernel function, the Parzen windows method fits this&l function around every element of
the data set and uses a linear combination of these kerregiptoximate the probability distribution
of the data. For simplicity and convenience, the Gaussiatmillition is often used as the kernel
function, and the probability of a test vecteris approximated as a mixture of radially symmetric
Gaussians with the same variancg For a data set consisting & d-dimensional vectors, the
Parzen windows method estimates the true distribyt{en by:

. A1 N x — x(™
PN(x) = S e <T) €)
n=1
N
1 1 ||x—x(")||2
- N Zl (2m)d/2gd P <_ 202 (10)



With Gaussian kernels, points that are far away from thegestt are virtually irrelevant, as the
contribution of these points decreases exponentially tiéhsquare of the distance. The width of
the kernel is determined by the variance If o is too small, then the estimated distribution of the
data would be overfitting the data, in the form of peaks araauh data point. I§ is too large, then
the estimated distribution would suffer from low resoluti@as distributions of different classes may
overlap and blend separate classes into one single clagk.aWmited number of data, one must
seek a compromise between these two extremes and empifigal to minimize the classification
error. (This trade-off is illustrated in Figure 14.) But imet case where an unlimited number of
examples is available, one can tet— 0 and achieve an asymptotically close estimate to the true
distribution of the data. Specifically, for al, when the number of exampléé goes to infinity,
pn (x) converges tp(x) in the mean square sense, where

Jim Elpx(x)] = p(x) (11)
Jim var[py(x)] = 0 (12)
h=0.5 h=0.2
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Figure 14: Three Parzen-windows estimate of the data, baiselde same five testing examples.
The vertical axes are scaled to show the structure of eatfibdigon. In this figure s has the same
function asos from our discussion. Reproduced from Richard O. Duda, Hetefart and David G.
Stork,Pattern Recognition©2001 by John Wiley & Sons, Inc.

For classification, the generative paradigm is followg |C) is first estimated from the data using
Parzen windows density estimation aR@C') is either estimated by a simple frequency distribution
(if C is finite) or a subjective prior distribution that reflectse@nbelief about the distribution of
classes. (In our equations, we assume the frequency appiaaestimatingP(C).) ThenP(C|X)

is computed from the Bayes rule, as shown in Equation 8. Atpbint, the data should have been
partitioned into different classes, based on the shapeegbitbbability distribution (Equation 9) as
estimated by the Parzen windows method. As a result, theviolg estimates can be obtained for

each clasg:
1 x —x(
X=x|C=k) ~ — - 13
p( | ) N, négk ® ( - ) (13)
Ny
PC=k) ~ — 14
C=k ~ % (14)

whereN is the number of data vectors, of whidh, vectors belong to clags Note that the sum for
p(X = x|C = k) is taken over the indices i@, which correspond to those data vectors that belong
to classk. In other words|Gy| = Ni. Combining these two expressions results in locally weidht
averaging of the data:

Sl ()T k)
S (=)

wherel (x(™ — k) is an indicator function that evaluates to Xkif*) belongs to class and evalu-

ates to 0 otherwise. Lastly, is assigned to the clagswith the highest probability?(C' = k|X =
X).

P(C =KX =x) ~

(15)

19



In fact, one can interpret the Parzen classifier as a genatial of thek-nearest-neighbor method.
In the k-nearest-neighbor classifier, the class of a test poiist determined by the majority vote
of the classes fronx’s k& nearest neighbors. Instead of examining just/theearest neighboring
vectors, the Parzen classifier considers every vector irdéte set and weights their votes by a
kernel function centered on the test paintAlthough the method considers every data vector, not
every vector actually contributes to the majority votecsiwvectors that are located outside of the
kernel function will have 0 weight.

In the limit of infinite amount of data, the Parzen window estte of the data distribution approaches
the true distribution. In practice, many data vectors mayduagiired for a reasonable estimate of
the data distribution. This demand for data grows expoabytivith the dimensionality of the data,
limiting this method’s applicability due to its severe cautgtion and memory requirements.

The method of Parzen windows has been applied with succassvidty detection for intrusion
detection infYeung and Chow, 2042In this work, novelty detection is formulated as a hypothes
test, where the log-likelihood of the test vectb(x), and the log-likelihood of an arbitrary vector
y sampled from the normal clasg(y), are compared. IP(L(y) < L(x)) > 1 for some false
alarm ratey € (0, 1), thenx is labelled as belonging to the normal class. Otherwiss,labelled

as anomalous. The study used the 188® Cup data sefiHettich and Bay, 1999 which contains

a standard set of data to be audited, including a wide vaokigtrusions simulated in a military
network environment. The study compared the proposed Pdrased intrusion detection system
against thexpb Cup winner, using the true acceptance rater( and the true detection rate{r)

as the performance metrics. TiweR measures the percentage of normal instances in the tekaset t
were correctly classified as normal, while theR measures the percentage of intrusions in the test
set that were correctly classified as intrusions. To esérntia distribution for the normal class, 3000
randomly generated examples were used as training dateerpigical results are shown in Table
5, where the Parzen-based detector outperformekitbeCup winner in the detection of intrusions,
with similar or much higher values for th®r. On the more difficult types of intrusion (types 3 and
4 shown in Table 5), thepb Cup winner performed poorly while the Parzen-based detecis
able to dominate by a clear performance margin.

Table 5: Comparison of the Parzen-based intrusion detecithekbb Cup winner. The higher
performance score is shown in boldface. Reproduced fix@uang and Chow, 2042

Method TAR TDR

Normal | Intrusion Type 1| Intrusion Type 2| Intrusion Type 3| Intrusion Type 4
Parzen-base¢| 97.38% 99.17% 96.71% 93.57/% 31.17/%
KDD winner || 99.45% 87.73% 97.69% 26.32% 10.27%

5.2 Mixtureof Gaussians

A Gaussian mixture density issadimensional probability distribution, defined by the wetigd sum

of M components:
M

p(X[0) = Y p(X|m)P(m) (16)

m=1
where each componeptX|m) is a d-dimensional multivariant Gaussian distribution with mea
1. and covariance,,:

1
(27T)d/2|21'|1/2
and P(m) is a mixture coefficient, wher&(m) > 0 form = 1,..., M and fo:l P(m) = 1.
Thus, the Gaussian mixture density is parametrized by trenpeters from all its components:

9 = {,ul, ...,/1,]\,17217 ,E]\/[7P(1)7 ,P(M)} (18)

p(Xm) = exp (5% = V£ X - ) a7)

For classification, the data from each clasare represented by a Gaussian mixture density, where
p(X|C = k) 2 p(X|60x) (as given by Equation 16). The paramet@rsre typically optimized in a
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maximum likelihood sense by using the expectation-mavaiisn algorithn{ Dempsteet al, 1977;
Bilmes, 1997, or in a Bayesian sense by using Markov chain Monte Carlo oustiGilks et al,,
1994 to sample the parameters from the posterior distributiome @lass probability>(C) is of-
ten assumed to be a discrete distribution or a multivariaesSian for computational efficiency, in
which the parameters tB(C) are typically learned using maximum likelihood or Bayesiach-
niques. A test vectax is assigned to the most probable class {1, ..., K'} such that:

¢ =argmax P(C = k|X = x) oc argmax p(X = x|0;)P(C = k) (19)
1<k<K 1<k<K

Gaussian mixture models have been applied with successtakapidentificatioiReynolds and
Rose, 199band active learning for anomaly detectigtelleg and Moore, 2095In [Reynolds and
Rose, 1995 the use of Gaussian mixture densities for modelling spadketity was motivated by
two main reasons, that (1) Gaussian components can effgctivodel a speaker’s acoustic classes
and (2) Gaussian mixtures can be used to model any arbitistrybdtions, thus lending to their
versatility. In this study, the classification task was tereotly classify a test segment of speech
and identify the speaker from whom the speech segment wasated. The experiments were con-
ducted on a subset of thkeNG speech databag&odfreyet al., 1994, which contains conversation
speech samples from 51 male speakers. For each speakerltbdi0 independent conversations of
approximately 45 seconds. The performance metric is takbe the percentage of correct identifi-
cation. The results for the study are presented in Figuren5L6. In Figure 15, the performance
of speaker identification is plotted against the number oftune components in the Gaussian mix-
ture model, for test segments and training segments ofnvgutgingths. The empirical results show
that beyond 16 components, there is only marginal improvenmethe performance. Moreover,
as the amount of training data is reduced, it becomes moatto choose the optimal number
of components for the Gaussian mixture. In Figure 16, thalspreidentification performance is
plotted against the length of the test speech segment,fferetit number of speakers. The left plot
presents the results for clean speech and the right plog¢ptethe results for the telephone speech.
For clean speech, near perfect identification is achieveshwhe test speech is 15 seconds. How-
ever, for telephone speech, due to the low signal-to-naise of the audio data, there is a significant
degradation in performance.
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Figure 15: Speaker identification performance as a funaiiothe number of components in the
Gaussian mixture model. The left plot shows the performdocéest segments of 1,5, and 10
seconds in length, in which the model is trained on 1 minuterahing segment. The right plot
shows the performance for training segments of 30,60 ande80nsls of speech, where the test
segment is 5 seconds. Reproduced ff®aynolds and Rose, 195

In addition to speaker identification, Gaussian mixture aiedhave also been applied in an active
learning framework to find rare and useful anomalies. Thadtarning approach proposed by
[Pelleg and Moore, 20Q5assumes that the distribution of the data is extremely sitemweards
the normal class and that a mixture model can be used to fitdtee dhe active learning process
proceeds in rounds, where the computer attempts to leamalel of the data from a small number
of labelled training instances along with a large numberm&belled training instances. Then it
identifies a small number of difficult instances and elidits human user to provide labels for these
difficult instances. The human user labels these instammkadd them to the collection of labelled
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Figure 16: Speaker identification performance as a funaifdhe test segment length, for popula-
tion sizes of 16, 32 and 49 speakers. The model contains 5pa@oents and is trained using 80-100
seconds of speech per speaker. The left shows the perfoerfaradean speech and the right shows
the performance for noisy telephone speech. Reproducet fReynolds and Rose, 19P5

data, and the cycle repeats. This framework is flexible i ttiha labels are unconstrained and the
user has the freedom to add, delete and change the classéisAsw result, this system allows for
adaptive learning of a dynamic data set.

This work presents several selection methods by which etfidbinstances are chosen for the feed-
back process. The following criteria foint selectionwere examined:

e LOWLIK: Choosing instances with low likelihood, i.e., data on vihilhe model performs
worst. In particular, instances are ranked in increasimgoof model likelihood and the
ones with low likelihoods are chosen.

e AMBIG: Choosing ambiguous instances, i.e. data that the compasethe least certainty
about. In particular, instances are ranked in decreasithgy @f entropy and the ones with
high entropy are chosen.

e MIX-AMBIG-LOWLIK: Hybrid approach of the two selection schemes describedeabo

e INTERLEAVE: Choosing points based on the ranking from the perspectiysbone com-
ponent, instead of a mixture of components.

Experiments were ran on synthetic data and real data. Thapgsoach ofNTERLEAVE seems
to perform best in both synthetic and real cases. Workingfiloe definition of a mixture model,
this active learning approach allows each component to mataiits favorite queries. Empirical
results show that this method works well in the presence sfrdata and extremely rare anomalies.
Figures 17 and 18 shows the learning curves for various i#al gkts, as characterized in Table 6.
The learning curves show the percentage of classes dismbasra function of the number of hints
requested by the computer system.

Table 6: Properties of the real-life data sets used inPedleg and Moore, 2005tudy. Reproduced
from [Pelleg and Moore, 2005

smallest| largest

Data set #dim | # records| # classes
class class

ABALONE 7 4177 20 0.34% 16%
KDD 33 50000 19 0.002% | 21.6%
EDSGC 26 1439526 7 0.002% | 76%
SDSS 22 517371 3 0.05% | 50.6%
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Figure 17: The learning curves for taeALONE [Newmaret al., 1999 (left) and thexbb [Newman
et al, 1999 data sets. Reproduced frdielleg and Moore, 2045
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Figure 18: The learning curves for tE®scc[Nichol et al., 2004 (left) and thespss[Finkbeiner
et al, 2004 (right) data sets. Reproduced frdfelleg and Moore, 2005

The experiments show that this tremendously reduces théeawuaf instances that a human user
must label before presentation to an automatic learneadt) & user only needs to label one or two
hundred examples before a rare anomaly from a huge datalsshig presented to the user.

To allow for greater flexibility in the Gaussian mixture madéee and Lewicki, 200Pproposed
the generalized Gaussian mixture mod&hose mixture component can deviate from normality to
represent platykurtic and leptokurtic distributions. Ascamparison, the generalized Gaussian mix-
ture model was compared against the standard Gaussianrenimtudel and thé-means clustering
algorithm, in the unsupervised classification of the dataskewn in Figure 19. The number of
classes is assumed known and the classification task isno tlea model parameters and to clas-
sify the data. The classification error was 48005% for the generalized Gaussian mixture model,
5.5%+0.3% for the Gaussian mixture model, and 18.3% foritiraeans clustering algorithm. The
study showed that the generalized Gaussian mixture modajual or superior to the Gaussian
mixture model, especially in data that are non-Gaussiarandnd with outliers.

5.3 Stateestimation vs. anomaly detection

Before we discuss generative models for anomaly detecfie@noporal processes, it is useful to
relate state estimation to anomaly detection. In the gémerframework, probabilistic models
encode how a system evolves over time. At each tinihe state is denoted 8, and the history
of observations up to timeis given byy;., = {y1, ..., y-}. The posterior distributiop(S|y1.-)
represents our belief about the system at tinggven the most up-to-date information.
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Unsupervised Classification of Four Classes
T T T

Figure 19: Example data used in the unsupervised classfictsk in[Lee and Lewicki, 200D
The data in each class was generated by a random distrib®eproduced frorflLee and Lewicki,
200d.

State estimation is a two-step process that is achievedughrdBayesian updating. Given
p(Si—1|y1..—1), State prediction is the act of computing the predictiveriistion p(S;|y1..—1),
which represents the best estimateSpfgiven observations up to time— 1. Whenyy, the obser-
vation at timet, is made available, we apply this information to update tregljctive distribution
and obtairp(S;|y1.:), the posterior distribution at time The two steps of prediction and correction
comprise the overall process of state estimation, as showigure 20.

Predictive distribution Observation
at t|me t at “me t
" p(s bﬁ.:t—l)\ State , yt
State P N\ Correction ,7
Prediction _ .~ e e
.- A K
Posterior distribution _-" Posterior distribution
attimet-1 _ -~ attime t
P(S-1 M1 ) P(S Y1)
l |
| [
Time t-1 Time t

Figure 20: The iterative process of state estimation. Spageliction is the act of computing
p(St|ly1:t—1), the predictive distribution for the state at a future titnghile using only the history
of observations from time to ¢t — 1. State correction is the act of updating the predictiverithigt
tion p(S¢|y1.+—1) to yield the posterior distributiop(S;|y1.:), which incorporates the most current
observation as part of the state estimate. Classificatidrmaomaly detection involve mathematical
operations on the posterior distributip(S;|y1.¢).

Both classification and anomaly detection typically inebperations on the posterior distribution.
Givenp(S:|y1.), classification boils down to identifying the class (whistusually represented as
part of the state) with the highest probability, and anondalgction reduces to thresholding the pos-
terior distribution then attributing the low-probabil#yates to a completely new class. In addition to
strictly using the posterior distribution, one can also sigaificant changes between the predictive
distributionp(S;|y1..—1) and the posterior distribution(S;|y:..) as an indication for abrupt state
changes. Whep(S;|y1.¢) differs dramatically fromp(S;|y1.:—1), this usually means that a state
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transition occurred at timeand the effect of this transition was captured by the obsenvg,;. By
using the discrepancy betweg(8;|y1.:—1) andp(S;|y1.:) as an additional detection criterion, one
may be better able to infavhenexactly the system changes from a normal state to an anomalou
state, and vice versa.

Thus, it is clear that generative classification/deteat#ies heavily on state estimation. In turn, the
efficiency of state estimation depends on the class of mdmbéigy used for generative modelling
and the type of inference algorithms being used for reagpafiout these models.

5.4 Hidden Markov models

A hidden Markov model mm) [Rabiner, 198Pis a graphical model that represents a Markov
process whose sta® is hidden and can only be inferred through (noisy) obsemwaly ;. An HMM
assumes that the system evolves according to a first-ordédMarocess in which the current state
depends only on its previous state:

p(St|So;t_1) = p(St|St_1), t= 1, 2, (20)
and additionally, observations depend only on the currtates:
p(Yt|S0;t) = p(Yt|St), t= 1, 2, (21)

For simplicity, mosHMM s assume that the probabilitie€S, |S;—1) andp(Y|S;) are stationary, in
that these distributions do not change with time:

p(S¢[S¢—1) = pP(Ss+t[Ssqi-1), s=>0
p(Y¢|S¢) = p(Yoit|Sett), 52>0

With these assumptions, ammM characterizes the temporal process by its transition model
p(S¢|St—1) and its observation modelY:|S;). Thus, the state evolves probabilistically accord-
ing top(S¢|S:—1) and is observed through noisy measurements accordin@tgS;), as shown in

o _,<:>
@ I

Figure 21: A hidden Markov model. The st&gevolves probabilistically according 14S;|S;—1),
where the causal dependence betwBgn, andS; is shown by the arrow fron$, ; to S;. In
turn, the staté; is observed through noisy measurements accordipgYo|S; ), where the causal
dependence betwe&; andY, is represented by the arrow fro¥a to Y.

(22)

HMMs are well-studied and established algorithms are avaifblinference and parameter learn-
ing. For classification, the Viterbi algorithfviterbi, 1967 can be applied to any finite-stateim

to find the most probable sequence of hidden states that bawkl generated a given observation
sequence. Since the input features can be associated witlibffervations and the unknown classes
with the hidden states, one can use the Viterbi algorithmlaesify any input vector to its most
probable class. Application efmMms for classification and anomaly detection has been quitapop
lar in the intrusion detection communiiyane, 1999; Yeung and Ding, 2003; Ourstiral., 2003;
Wright et al,, 2004.

In [Yeung and Ding, 2003 the effectiveness of dynamic and static models for intmisietection
were compared in an empirical study. In particular, thestihmined the dynamic and static mod-
els’ performance on detecting intrusions from program ¢lagésed on system calls) and from user
data (based on shell commands). The dynamic model is rayieeseyHMM s, trained on data corre-
sponding to normal behavior. In this dynamic framework,estaations with low likelihood values,
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in respect to the model, are associated as intrusions. Egstétic model, frequency counting of
event occurrences is used to estimate the frequency ditribthat characterizes normal behavior.
In this static framework, the criterion for an intrusionfishie cross entropy between two frequency
distributions, in respect to the model, exceeds a giverstiule. The clear difference between the
two models is that the static one does not take into accoerdriter in which events occur, while the
dynamic one does incorporate this information as part ofihe . Like [Yeung and Chow, 2042
novelty detection is formulated as a hypothesis test angddifermance metric is measured in terms
of the true acceptance rateaR) and the true detection rater). (See Subsection 5.1 for details.)

The two modelling approaches were tested on two differgragyof intrusion data: the system call
data sets from the University of New Mexi¢Borrest and Hofmeyr, 199&nd the shell command
data sets from the University of California at Irvifidewmanet al, 1994. On the first set of
data, the dynamic models showed superior performanceaphptue to the temporal dependencies
between system calls. But on the second set of data, the dynaodels were outperformed by the
static models. (Extensive results are presentddéung and Ding, 2003 please refer for details.)
Thus, it was inferred that temporal dependencies in shelhsand sequences may not be very useful
and could potentially be a noisy feature that deters detecth\s a result, this study suggests that
HMMSs should be used only for applications with strong tempogpkthdencies.

The observation thatMms are well-suited for modelling of sequential processesijgpesrted by
[Ourstoret al, 2009, in whichHMM s were applied to detecting multi-stage network attackes€h
attacks typically span an extended period of time and areposed of multiple steps in which
actions may interchange within each step. The requirenoenhferchangeable actions allows the
system to model random or deceptive behavior on the pareopdnpetrator, who might attempt to
mask his or her actions by random changes in the action sequBue to the sequential nature of
this domain, it makes intuitive sense to use a temporal middebn HMM, because the order of
actions that constitute an attack provides invaluablermédion about the nature of the attack.

The experiments were conducted on a set of in-house netwndosdata, in which a semi-automatic
procedure was used to categorize the data into classes diéfingubject experts. Each training
example consists of an alert sequence, ordered tempdtadlypccurred over a 24-hour period. A
comparison was made between them approach, a decision tree algorithm and a neural network,
as shown in Figure 22. The performance metric was the fractitest examples that were correctly
classified.
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Figure 22: The detection performance, defined as the fractidest examples that were correctly
classified, as a function of the number of training exampidss refers to the decision tree approach
andnN refers to the neural network approach. Reproduced f@urstonet al,, 2003.

In Table 7, the confusion matrix and the precision, recadl Brmeasure statistics are shown. The
confusion matrix displays the probability that a test exnffom a particular class is assigned to the
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Table 7: The results of the experiment expressed as a confusatrix and statistics of precision,
recall and F-measure. Reproduced fri@urstonet al., 2003.

Training examples Test examples Performance Sampling iterations
300 100 0.9255 100

Examples assigned to category
21.1 0.0 150 29.7 4.6 0.3 0.0 9.8 2.6 12.1 44 03 0.0

Cat Exs in cat Confusion matrix

1 20.2 *#%0.96%*% 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.0 0.80 **0.20%* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 157 0.02 0.00 **0.92** 0.01 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
4 324 0.01 0.00 0.00 **0.90** 0.06 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
5 22 0.05 0.00 0.03 0.05 **0.83** 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00
6 0.2 0.00 0.00 0.00 0.00 0.00 **0.35%* 0.00 0.65 0.00 0.00 0.00 0.00 0.00
7 0.2 0.85 0.00 0.00 0.00 0.00 0.00 **0.15%*% 0.00 0.00 0.00 0.00 0.00 0.00
8 94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 **1.00%** 0.00 0.00 0.00 0.00 0.00
9 2.5 0.03 0.00 0.01 0.03 0.00 0.02 0.00 0.02 **0.90** 0.00 0.00 0.00 0.00
10 12.7 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 *#*0.93*x 0.00 0.01 0.00
11 44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 **1.00%* 0.00 0.00
12 0.1 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.33 0.00 **0.17** 0.00
13 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 *%*0.00%*
Precision 0.92 1.00 0.96 0.98 047 025 1.00 0.96 0.87 0.97 1.00 0.06 ?
Recall 0.95 025 092 0.90 081 035 0.13 1.00 093 0.93 1.00 0.17 ?
F-measure 0.93 1.00 0.94 0.93 0.60 0.89 0.89 0.98 0.90 0.95 1.00 0.67 ?

another output class. The diagonal of the confusion matiixvs the probability that a test example
is correctly assigned to its class. Precision, recall amdelgsure are functions of the true positives
(tp), false positives (p) and false negativegt), as follows:

t 1
P Recall= R = L F-measure= —;

Precision=P = ———, , _—
tp+ fp tp+ fp ap+(1-a)g

(23)

wheretp correspond to the number of correctly identified intrusjgfscorrespond to the number
of erroneously identified intrusions, arfa. correspond to the number of instrusions missed by the
detection system. The parametewas set to 0.5 to allow for equal weighting between precision
and recall. In general, the precision, recall and F-meagltees show relatively good performance,
except for classes where with training and testing dataraefficient. To quantify the value of
extra training data, experiments were run with differentiber of training examples, and the per-
formance, in terms oRoc curves and the area under these curves, are presented neg-Rfiand

24. As expected, it can be seen that detection generallyowegrwith more training data.

5.5 Dynamic Bayesian networks

Dynamic Bayesian network®gNs) [Dean and Kanazawa, 1988re compact representations of
Markov processes. Like amvim, aDBN is a graphical model, where state variables are represented
as nodes and causal influences between variables are mejeckas arrows between nodes. Butin
contrast to amMM where parameters are defined over the entire Stgteach node; in aDBN is
associated with a conditional probability distributjafb; |Pa(S;)) that encapsulates the conditional
probability of that variable given itgarentsPa(S;). (A variable’s parents are the subset of the state
variables that affects that variable.) ThogNs generalizeiMms in thatbBNs exploit conditional
independencies between state variables to represenatisition model and the observation model

in a factored manner, as a product of lower-dimensionaladvdity distributions that correspond to
the local dynamics:

p(SiSi—1) = []p(SislPa(Siy)) (24)

p(Y4[S:) = Hp(Yj,tha(Yj,t)) (25)
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Figure 23: Detection performance, expresseR@s curves, for training data of different sizes. The
results presented are from the testing data for class 1.0deped fron{Ourstonet al,, 2003.

1 ICategory 11
Category 8 eesesss soeeTTs FFFToTTN 77 050 tutt 0t Bl "0l At Smiame

0g Category 1 ’ T g o St St T N R Nl T
Category 3 g

Category 4

Category 10 = .

Category 9
0g [V

Category5 =="""""
04 it

0.2

Area Under the ROC Curve

0 50 100 150 200 250 300
Number of Training Examples

Figure 24: Detection performance, expressed as area umel@ot curves, for training data of

different sizes. Classes with insufficient testing datarareshown. Reproduced frof@urstonet
al., 2009.
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wherei is the index over the state variables gnid the index over the observation variables. [For a
detailed description abBNs, please refer to the companion survey on Bayesian modetfporal
processes.]

The use obBNs is quite popular for modelling temporal processes in agfibins of fault detection
and diagnosis. In these applications, the sftés often augmented to include fault variablés
that denote the absence or presence of different faultseSive presence of a fault affects how the
system behaves, this causal effect is represented grélptogathe arrow from the fault variables
Z, to the system variable¥,, shown graphically in Figure 25. Note that, in this framekydhe
observation variable¥ take on the role of the input featurd§, and the fault variableZ now
represent the output classes. The variaBMesan be interpreted as auxiliary random variables that
model other aspects of the system, which may aid in claigfyire relationship betweeyi andZ.

Zi >

Figure 25: An exampleBN of a hybrid-state system that includes fault variableshis éxample,
the fault variable,; are discrete-state (shown as square nodes), while tharsyatgablesv, and
the observation variablég, are continuous-state (shown as circular nod¥s)is observed through
the variableY;, whose measurements may be affected in the presence oftatfeud the arrow
going fromZ, to Y.

In this modelling paradigm, the state contains both theesgsand fault variables, i.eS; =
{V:,Z.}. From the history of values foY; (the observed variables), the probability distribution
P(S¢|y1.+) is estimated using standard state estimation techniques P(S;|y1.;), the most prob-
able fault states (in respect toP(Z:|y;.:)) are identified and are presented to an analyst for the
proper diagnosis of the system.

Under this paradigm of system modellinig,erneret al, 200J have shown success with using
hybrid-statebBNs for plant modelling and fault diagnosis. In this workpBN model of a multi-
tank system was constructed from the specifications giventamporal causal graph. Tin&aN
model contained fault variables that represent:

e Measurement faults, which occur when a sensor fails, cgusi@asurements to become
extremely noisy.

e Burst faults, which occur when a pipe bursts, causing the’'pipesistance to change
abruptly to some unknown value.

o Dirift faults, which occur as a result of normal wear-and-taaa pipe, in which the pipe’s
resistance may gradually drift to a non-calibrated value.

The entire system consists of five tanks connected in sequgnpipes. Fluid exchanges from one
tank to a connecting tank occur spontaneously when the #uwigl in one tank exceeds the height
of the connecting pipe, as shown in the schematic from theptp of Figure 27. A fragment
of the system’®BN model is presented in Figure 26, which shows the connecbehseen the
continuous system variables and the discrete fault vasagghown a for burst/drift faults and
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E for measurement faults) for a system of two tanks. For fahhls persist over time, such as drift
faults, the fault variablé; will be dependent o, _4, its copy at time — 1, as shown graphically
by the arrow fromD,_; to D,.

Figure 26:DBN of a two-tank system. The fault variables are denotedbgnd E. Reproduced
from [Lerneret al,, 200(.

At any point in time, the number of different faults that castor is227. As a result, approximate
inference was performed on til@N model, where the model was decomposed into 5 subsystems
and each tank comprises a subsystem. Nonetheless, to eheteentary faults, whose direct effects
are not observable upon its onset but are only observalgleafthort delay, amoothingprocedure
was also required. In this inference procedu?€Z; |y1..+-) is used instead aP(Z,|y;.;) for fault
detection. The intuition is that, by taking into account@tstions that occur time stepsafter the
onset of the faultZ,, there should be more evidence to support the presencesef thelts and thus
detection rate should be improved. The empirical resuttmfthis study supports this intuition, as
shown by the remarkable state estimation of the hiddenMari€onductance”, as shown in Figure
27. Only the state estimation results are shown becausédteeestimation performance is directly
related to fault detection performance. Faults affect jfs¢esn behavior, and as a result, if the faults
were not promptly detected, one would see errors in the stdimate.

The experiment was run on the full 5-tank system and the ghtens were generated from a
handcrafted scenario where many different and multipléfamere injected between time 5 and
25. To illustrate the improvement that smoothing bringshi® detection accuracy, we examine a
particular fault, as presentedfiberneret al, 200d. At timet¢ = 5, a drift fault was introduced to
the variableR,3. Upon its onset, the probability for a drift fault was onl902%. Attimet = 6, the
probability jumped to 71.7%, and was further increased t8%@after the smoothing procedure. At
this point, the algorithm had correctly detected this fanii maintained a high probability until the
effects of this drift wore off. Thus, this study demonstsatigatbBNs are useful in fault diagnosis,
and the smoothing procedure, combined with the subsyst@moemations, shows much success
in tracking a complex system, in the presence of faults wihall number of measurements.

In addition to fault diagnosi®iBNS have also been applied to the emergent field of privacydittnu
detection[An et al, 2004. Privacy intrusion is the act of illegitate disclosure ongeal misuse
of private data by human agents who are entrusted with thisitsee information (e.g., employees
from a government’s revenue service or employees from acakkdiboratory). With the growth of
information technology, most business organizationscolprivate information about their clients
and it is the responsibility of each organization to monétod to detect possible misuses of private
data by its agents. While privacy intrusion detection hanbmplemented as comparing the agent’s
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Figure 27: Schematic of the five-tank system (top) and thk éagnosis results (bottom). Repro-
duced fromlLerneret al,, 2004.

behavior against his or her profile of normal behavior, teisdt sufficient for misuse detection,
because simply tracking the amount of time or the frequemeyhich an agent accesses a particular
information database can lead to many false alarms, sirc@aglent may have legitimate work-
related reasons to do so. As a result, this study applEds to combine various domain-specific
features to establish a measure for degree of suspiciousnef&s an intrusion.

In general, this is a sensible approach because the aggivdfi an agent constitutes a stochastic
process. The agent may be assigned a task that takes a mdlpagod of time and the actions
taken to fulfill this task are likely to be causally relatedhelstudy presentedsN (shown in Figure
28) that was tailored for a government’s revenue servitepagh the same modelling paradigm can
be adapted for other industries.

In Figure 28, each box contains the random variables thas@eeific to one time slice. In each
slice, the variables are defined as follows:

e F'_d: the usage frequency of databases

e F'_r:the usage frequency of records

e T'_r: the amount of time spent on records

e M _r: indication for modification of records

e T'k: type of task performed (audit or collection/delivery)

e Intr: indication for intrusion of privacy

e Hrs: indication of whether work was performed during businessrh

e A_r: the amount of records
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Figure 28: ADBN for privacy intrusion detection. Reproduced frgaAn et al., 2004.

e T'_d: the amount of time spent on databases

The arrow fromI'k0 to T'k1 represents the evolution of the agent’s tasks and the aroow/fntru0
to Intrul represents the evolution of the agent’s privacy intrusibmthis model, it is assumed
that the agent will be more likely to intrude if he or she is &ging in intrusive activities currently.
Analogously, the longer an agent refrains from intrusivevies, the less likely the agent will
intrude in the current time slice.

The study verified th®BN by commonsense validation through probable scenariohaBty due

to sensivity of real-life data, no actual detection reswkse presented. Nonetheless, the approach
outlined in this study is quite applicable for intrusionelgtion, especially if the attack involves the
theft of large amount of private data. Moreover, if a largeant of data being accessed by an agent
is irrelevant to the agent’s job, tlesN will perform especially well because irrelevancy is ditgct
modelled into theBN.

Lastly, we examine a recent application pBNs for traffic incident detectioiSingliar and
Hauskrecht, 2006 Traffic incident detection is an important practical pexhlbecause the cost
of highway accidents can be significantly reduced by theanpt detection. The study examined
the performance of simple univariate detectors that peréar thresholding on each feature, and
compared the combination of these simple detectors to aostypgctor machinegvm) (please re-
fer to Subsection 4.2 for details). Tls&M method was chosen becaiusevs generalize the linear
discriminators implemented by the thresholding detect®le algorithms were evaluated on real-
life traffic data collected from the most accident-pronensent of a highway in Pittsburg. The data
consisted of roadway statistics, such as the average gheechlume (number of passing vehicles)
and occupancy (the traffic density), collected over a pdtiatiranges from 30 seconds to 5 minutes.

It was found that arsvm approach generally outperforms the benchmark detectgorigim, the
Californiatsc-2 model. Thersc-2 model uses a sequence of thresholds to determine theedifes
and proportions between lane occupancy from one time stiye toext. Empirically, the benchmark
model could detect only a third of the incidents at best. Carag to thesvm model, theTsc-2
typically resulted in lowerocC Auc (area under the Receiver Operator Characteristic curheg¢sa
But at low false alarm rates,sc-2 outperformed thevm, due to the support from evidence in the
last time step. As aresult, a persistence check was incatgubas part of thevm, which increased
its performance dramatically, as shown in Figure 29.

This suggests that a temporal framework, in which a detestttynamized”, might more appro-
priate for this problem domain. As a resultbaN model (shown in Figure 30) was proposed. This
model contains a single hidden discrete-state vari@hlgynonymous with the unknown class) and
a number of conditionally independent univariate Gausslaservation variable® = Oq, ..., O,,.

In addition, there is also a binary observation variablevhich is the incident state as observed
by the traffic management center. Following our notatios, ¢bnditional distributiom(Z;|C;) is
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Figure 29: Comparison gfvm and the benchmark detector at low false alarm rates. Theltk
are shown as detection ratg-4xis) vs. false positive rate:{axis). The right plots areoc curves,
shown as the true positivity probability sensitivity(y-axis) vs. the false positive probability de-
fined by one minus thepecificity(z-axis). Plots (a) and (b) show the performance of the bendghma
detector, the Californiasc-2. Plots (c) and (d) show the performance of thev. Plots (e) and

(f) show the performance of the improvegtm that includes a persistence check, in which an inci-
dent must be detected in two consecutive time points befo@am is raised. Reproduced from

[Singliar and Hauskrecht, 2006



Detection Rate

handcrafted (seESingliar and Hauskrecht, 20Dfbr details) while the conditional probability dis-
tributions{p(0O; ;|C})}?_, are learned from data. An alarm is triggered at tinife

p(Cy = "accident effect buildugO1.¢, I1.+) + p(C; = “accident steady statfD., I1.1) > «
(26)
wherea is some preset threshold.

The performance for theeN-based approach is shown in Figure 31. Unfortunatelyptiie ap-
proach only achieved auc rRoc of 0.568381, compared to the 0.810531 that was achievedeby th
SvM. This underperformance might be attributed to the fact thatstructure of th@sN might

not be the best fit for the data. With a more compb®N model, performance can be improved.
Nonetheless, this work paved the way for usirBNs in this direction of anomaly detection.

Figure 30: ADBN for traffic incident detection. Reproduced frd®ingliar and Hauskrecht, 20D6
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Figure 31: The performance of tliBN-based detector. TheBN used as observations the traffic
sensors’ measurements, as well as their differences apdtians. Reproduced frofSingliar and
Hauskrecht, 2006

6 Conclusion

In this survey, we presented an overview of popular discrative and generative methods that have
been applied to applications of classification and anometigation. Each approach—discriminative
or generative—has its own advantages and disadvantagesmajor trade-offs between the two
approaches are as follows:
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e Generative models tend to be biased towards those that rizaxdne likelihood of training
data while the discriminative models are free from biasrsrdoie to any misrepresentation
of the input distribution.

e Generative models usually offer more insights about thectire of the system while dis-
criminative models can be hard to interpret, as most tresgyktem dynamics as a complete
black box.

e Discriminative models require more training data for theapaeters to converge. As a
result, in the case of sparse data and a reasonable amoumafrdknowledge, it might
make more sense to use generative models.

Further empirical comparisons can be found in:

¢ [Chanet al, 200d: in which neural networks, support vector machines, lifegaadratic
discriminant analysis, Parzen windows, mixture of Gaussiand mixture of generalized
Gaussians are compared in a case study for glaucoma diagnosi

¢ [Ulusoy and Bishop, 2045in which a discriminative model (based on logistic regi@s)s
and a generative model (based on mixture of Gaussians) amgared in the task of patch
labelling and object recognition on weakly labelled datanimal pictures, as shown in
Figure 32;

o [Pernkopf and Bilmes, 2005in which discriminative and generative parameter leagnin
on both discriminatively and generatively structured Bage network classifiers are com-
pared on a variety of benchmark data sets fiddewmanet al., 1994 and[Kohavi and
John, 199F.

In addition, recent developments in hybridizing the two ragghes have shown promising results
over either one of the method®ouchard and Triggs, 200gresents a simple way of combining the
two methods by interpolating linearly between the discniative and generative objective functions
during parameter learningJaakkola and Haussler, 1998 mbines the two methods by using a
SVM as the basis for the discriminative classifier, but deritirggkernel functions from a generative
model. [Rainaet al, 2003 presents a truly hybrid model whereby some parametersairett to
maximize the generative likelihood while other parameggesdiscriminatively trained to maximize
the conditional likelihood. As data become more high-digienal and complex, it is clear that one
single method will not be sufficient and that an adaptive tdrbation scheme will prove to be useful
in the field of anomaly detection of dynamic processes. luishmpe that this survey will be able to
facilitate and advocate future developments in this area.
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