Chapter 4: Geological Carbon Sequestration

PDF Version Also Available for Download.

Description

Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) ... continued below

Physical Description

PDF-file: 34 pages; size: 0.6 Mbytes

Creation Information

Friedmann, J. & Herzog, H. June 14, 2006.

Context

This book is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this book can be viewed below.

Who

People and organizations associated with either the creation of this book or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this book. Follow the links below to find similar items on the Digital Library.

Description

Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or reduce the benefits of CCS? Importantly, there do not appear to be unresolvable open technical issues underlying these questions. Of equal importance, the hurdles to answering these technical questions well appear manageable and surmountable. As such, it appears that geological carbon sequestration is likely to be safe, effective, and competitive with many other options on an economic basis. This chapter explains the technical basis for these statements, and makes recommendations about ways of achieving early resolution of these broad concerns.

Physical Description

PDF-file: 34 pages; size: 0.6 Mbytes

Source

  • MIT Report: Future of Coal in a Carbon Constrained World, Chapter 4: Geological Carbon Sequestration, MIT Press, Cambridge, MA 2007, pp. 170

Language

Item Type

Identifier

Unique identifying numbers for this book in the Digital Library or other systems.

  • Report No.: UCRL-BOOK-222206
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 902358
  • Archival Resource Key: ark:/67531/metadc887925

Collections

This book is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this book?

When

Dates and time periods associated with this book.

Creation Date

  • June 14, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Oct. 6, 2016, 12:21 p.m.

Usage Statistics

When was this book last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Book

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Friedmann, J. & Herzog, H. Chapter 4: Geological Carbon Sequestration, book, June 14, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc887925/: accessed September 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.