Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility - 2004 Annual Report

PDF Version Also Available for Download.

Description

The U.S. and other countries address major challenges related to energy security and the environmental impacts of fossil fuels. Solutions to these issues include carbon-free electricity generation and hydrogen production for fuel cell car, fertilizer synthesis, petroleum refining, and other applications. The Very High Temperature Gas Reactor (HTGR) has been recognized as a promising technology for high efficiency electricity generation and high temperature process heat applications. Therefore, the U.S. needs to make the HTGR intrinsically safe and proliferation-resistant. The U.S. and the world, however, must still overcome certain technical issues and the cost barrier before it can be built in ... continued below

Creation Information

Oh, Chang; Lillo, Thomas; Windes, William; Totemeier, Terry & Moore, Richard October 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 48 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The U.S. and other countries address major challenges related to energy security and the environmental impacts of fossil fuels. Solutions to these issues include carbon-free electricity generation and hydrogen production for fuel cell car, fertilizer synthesis, petroleum refining, and other applications. The Very High Temperature Gas Reactor (HTGR) has been recognized as a promising technology for high efficiency electricity generation and high temperature process heat applications. Therefore, the U.S. needs to make the HTGR intrinsically safe and proliferation-resistant. The U.S. and the world, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30% reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to some Generation-IV reactors such as the HTGR and supercritical water reactor, (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase turbine work enhancing the plant net efficiency.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INEEL/EXT-04-02437
  • Grant Number: DE-AC07-99ID-13727
  • DOI: 10.2172/910960 | External Link
  • Office of Scientific & Technical Information Report Number: 910960
  • Archival Resource Key: ark:/67531/metadc887811

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2004

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 5:25 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 48

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Oh, Chang; Lillo, Thomas; Windes, William; Totemeier, Terry & Moore, Richard. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility - 2004 Annual Report, report, October 1, 2004; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc887811/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.