Properties of Ellipticity Correlation with Atmospheric Structure From Gemini South

PDF Version Also Available for Download.

Description

Cosmic shear holds great promise for a precision independent measurement of {Omega}{sub m}, the mass density of the universe relative to the critical density. The signal is expected to be weak, so a thorough understanding of systematic effects is crucial. An important systematic effect is the atmosphere: shear power introduced by the atmosphere is larger than the expected signal. Algorithms exist to extract the cosmic shear from the atmospheric component, though a measure of their success applied to a range of seeing conditions is lacking. To gain insight into atmospheric shear, Gemini South imaging in conjunction with ground condition and ... continued below

Creation Information

Asztalos, Stephen J.; /LLNL, Livermore; de Vries, W.H.; /UC, Davis /LLNL, Livermore; Rosenberg, L.J; Treadway, T. et al. January 17, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Cosmic shear holds great promise for a precision independent measurement of {Omega}{sub m}, the mass density of the universe relative to the critical density. The signal is expected to be weak, so a thorough understanding of systematic effects is crucial. An important systematic effect is the atmosphere: shear power introduced by the atmosphere is larger than the expected signal. Algorithms exist to extract the cosmic shear from the atmospheric component, though a measure of their success applied to a range of seeing conditions is lacking. To gain insight into atmospheric shear, Gemini South imaging in conjunction with ground condition and satellite wind data were obtained. We find that under good seeing conditions Point-Spread-Function (PSF) correlations persist well beyond the separation typical of high-latitude stars. Under these conditions, ellipticity residuals based on a simple PSF interpolation can be reduced to within a factor of a few of the shot-noise induced ellipticity floor. We also find that the ellipticity residuals are highly correlated with wind direction. Finally, we correct stellar shapes using a more sophisticated procedure and generate shear statistics from stars. Under all seeing conditions in our data set the residual correlations lie everywhere below the target signal level. For good seeing we find that the systematic error attributable to atmospheric turbulence is comparable in magnitude to the statistical error (shape noise) over angular scales relevant to present lensing surveys.

Source

  • Journal Name: Submitted to Astrophys.J.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12297
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 897735
  • Archival Resource Key: ark:/67531/metadc887792

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 17, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 6, 2016, 4:53 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Asztalos, Stephen J.; /LLNL, Livermore; de Vries, W.H.; /UC, Davis /LLNL, Livermore; Rosenberg, L.J; Treadway, T. et al. Properties of Ellipticity Correlation with Atmospheric Structure From Gemini South, article, January 17, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc887792/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.