Microtopography for Ductile Fracture Process Characterization - Part 1: Theory and Methodology

PDF Version Also Available for Download.

Description

The mechanics of ductile fracture is receiving increased focus as the importance of integrity of structures constructed from ductile materials is increasing. The non-linear, irreversible mechanical response of ductile materials makes generalized models of ductile cracking very difficult to develop. Therefore, research and testing of ductile fracture have taken a path leading to deformation-based parameters such as crack tip opening displacement (CTOD) and crack tip opening angle (CTOA). Constrained by conventional test techniques and instrumentation, physical values (e.g. crack mouth opening displacement, CMOD, and CTOA angles) are measured on the test specimen exterior and a single through-thickness "average" interior value ... continued below

Creation Information

Lloyd, Wilson Randolph February 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The mechanics of ductile fracture is receiving increased focus as the importance of integrity of structures constructed from ductile materials is increasing. The non-linear, irreversible mechanical response of ductile materials makes generalized models of ductile cracking very difficult to develop. Therefore, research and testing of ductile fracture have taken a path leading to deformation-based parameters such as crack tip opening displacement (CTOD) and crack tip opening angle (CTOA). Constrained by conventional test techniques and instrumentation, physical values (e.g. crack mouth opening displacement, CMOD, and CTOA angles) are measured on the test specimen exterior and a single through-thickness "average" interior value is inferred. Because of three-dimensional issues such as crack curvature, constraint variation, and material inhomogeneity, inference of average parameter values may introduce errors. The microtopography methodology described here measures and maps three-dimensional fracture surfaces. The analyses of these data provide direct extraction of the parameters of interest at any location within the specimen interior, and at any desired increment of crack opening or extension. A single test specimen can provide all necessary information for the analysis of a particular material and geometry combination.

Source

  • Workshop on the Fundamentals and Application of the Crack Tip Opening Angle (CTOA),Geesthacht, Germany,04/24/2001,04/26/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INEEL/CON-01-00983
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911073
  • Archival Resource Key: ark:/67531/metadc887784

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 12, 2016, 7:59 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lloyd, Wilson Randolph. Microtopography for Ductile Fracture Process Characterization - Part 1: Theory and Methodology, article, February 1, 2003; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc887784/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.