Search for Chargino-Neutralino Pair Production at CDF

Else Lytken
for the CDF Collaboration
Purdue University, Lafayette IN

Abstract. We present the results of a search for associated production of the lightest chargino and nearest-to-lightest neutralino using 1 fb$^{-1}$ of $\sqrt{s} = 1.96$ TeV $p\bar{p}$ data collected with the CDF detector at the Tevatron. We combine the results of several multi-lepton final states to set upper limits on the cross section times branching ratio for chargino-neutralino production as a function of the chargino mass.

PACS. PACS-key describing text of that key – PACS-key describing text of that key

1 Introduction

The associated production of $\tilde{\chi}_1^+ \chi_2^-$ and $\tilde{\chi}_1^0 \chi_2^0$ is regarded as the golden discovery channel at the Tevatron for Supersymmetry (SUSY). Compared to the expected production cross sections of other SUSY processes for non-excluded masses, the chargino-neutralino pair production dominated by $W$-exchange is favorable high. In addition most of the allowed parameter space has a significant branching ratio into leptons. This gives a clean and striking signature of three leptons, and some missing transverse energy, $E_T$, from the remaining final state particles; a neutrino and two $\chi_1^0$'s. Assuming $R$-parity$^1$ is conserved the two lightest neutralinos will escape undetected. Typically a pair of opposite-sign leptons is expected to come from the neutralino decay, $\chi_2^0 \rightarrow \ell^\pm \ell'^\mp \chi_1^0$, via a virtual $Z$ or a slepton. The main decay mode of low mass charginos is into a charged lepton, a neutrino, and a $\chi_1^0$.

Previously published searches have set limits on the chargino mass of 103.5 GeV/$c^2$ [1] overall, and 117 GeV/$c^2$ for a particular model [2].

2 Analysis and prerequisites

Despite the low standard model backgrounds, the search suffers from a small total cross section times branching fraction into three charged leptons (<1 pb). A significant fraction of the leptonic decays are also expected to go into $\tau$'s, resulting in low $p_T$ or non-leptonic final states. This analysis looks for three isolated charged leptons, electrons or muons only, and to obtain maximum sensitivity, we have combined several dedicated analyses. Three analyses uses high $p_T$ (20 GeV/$c$) single lepton triggers: electron + $2e/\mu, (e \ell \ell)$, muon + $2e/\mu, (\mu \ell \ell)$, and electron or muon with same-sign electron or muon ($e^+e^-, e^+\mu^-, \mu^+\mu^-$). In these cases we can relax the requirements on the 2. and 3. leptons (if applicable) to improve the acceptance. To cover regions in parameter space with lower $p_T$ leptons we also have two analyses taking advantage of low $p_T$ (4 GeV/$c$) dilepton triggers: $\mu\mu + e/\mu, (\mu\mu\ell)$, and ee + isolated track $(ee\ell)$. In the latter case we are also sensitive to some hadronically decaying $\tau$'s.

The data is collected by the CDF detector [3] between Spring 2002 and Spring 2006. This corresponds to an integrated luminosity of 0.7 fb$^{-1}$ for the $\mu\ell\ell$ selection and 1 fb$^{-1}$ for the others. The analyses described here are published in [4].

2.1 Analysis cuts

Once we require three leptons the background is already greatly reduced. Those that remains are $Z+\gamma$, where the photon converts; $Z$+jets, where the jet is misidentified as a lepton; heavy-flavor background ($t\bar{t} + b\bar{b}$), and signal-like background from $WZ, ZZ$. For the same-sign dilepton analysis, the main backgrounds are $W^+\gamma, W^+jets, Z^+\gamma,$ and $WW$. We estimate the background from misidentified leptons from jet-triggered data, and other backgrounds from simulation. In the case of $\mu\mu\ell$, the heavy-flavor background is also estimated from data.

Detailed studies of lepton identification criteria and photon conversion tagging is our main tool to reduce backgrounds without real, isolated, and prompt leptons. In addition, we only accept events with low jet activity, either by direct requirements on the number of reconstructed jets, or by constraining the $\Sigma E_T$ of events. We suppress $Z+\gamma$ by asking for a minimal missing transverse energy, $E_T \geq 15$ (or 20) GeV. To reduce $WZ, ZZ$, and further suppress $Z+\gamma$, we also require

---

$^1 R_P = (-1)^{(3B-\ell)}$
that the invariant mass of opposite-sign leptons must not fall in the range 76-106 GeV/c^2, nor be less than 15 GeV/c^2 (20 GeV/c^2 for some analyses).

2.1.1 Control samples

Before we look for a possible excess of events passing the analysis cuts, we test our background predictions extensively by comparing it to observations in control samples, where we do not expect significant contributions from new physics. We check both the total event counts and the shapes of the analysis variables. A few examples can be found in Figure 1. The benchmark point used for illustration in the plots is an mSUGRA point with m_0 = 100 GeV/c^2, m_{1/2} = 180 GeV/c^2, tanβ = 5, A_0 = 0, and µ > 0, with a chargino mass of 113 GeV/c^2, and σ × Br = 0.16 pb.

We estimate systematic uncertainties from the identification of leptons, the integrated luminosity, initial- and final state radiation, parton density functions, the jet energy scale, the estimate of jets or photon conversions misidentified as prompt leptons, and theoretical uncertainties on the cross sections. Typically the largest systematic uncertainties come from the estimation of misidentified lepton.

3 Results

After verifying that we have good agreement between expectation and observation in our control samples we proceed to look at the subset of events passing the analysis requirements. The results are shown in Tables 1 and 2. For completeness we show also the expected yield from the mSUGRA benchmark point described above. There are small excesses in the observed event count for some channels but nothing significant. Therefore we use these results to set limits on the chargino-neutralino cross section times their branching ratio into leptons. (including τ’s).

3.1 Interpretation

We choose to interpret the result as limits on σ × Br as a function of the chargino mass in 3 models: The first one is a standard mSUGRA scenario with m_0 = 60 GeV/c^2, tanβ = 3, A_0 = 0, µ > 0, and m_{1/2} in the range 162-230 GeV/c^2. This was found to be the area of parameter space where the analyses had best sensitivity. The second model is similar to previous but with the slepton mixing turned off and slepton masses degenerate. To keep the same decay modes, we also changed the m_0 value to m_0 = 70 GeV/c^2. Our third scenario is also mSUGRA inspired, but we fix the branching ratios of the χ^±_1 and χ^0_2 to be equivalent to the low leptonic branching ratios of standard model
W’s and Z’s: BR(χ₊ → ℓνχ₀) = BR(W → ℓν), and
BR(χ₋₂ → ℓℓχ₀) = BR(Z → ℓℓ).

We present the results in Figure 2 as 95% confidence
limits using a frequentist approach [5] that takes into
account the correlations between the uncertainties
and between channels. The expected number of events in
Table 1 is overlapping between channels and when cal-
culating the combined acceptance, this overlap is re-
moved, and we rescale the background accordingly. To
extract expected and observed mass limits, we include
the theory uncertainty (represented in red dashed lines in
Figure 2) in the limit calculation and take the inter-
section between this and the central value of the the-
ory curve. We see that the expected mass limit in the
mSUGRA case was 122 GeV/c², whereas the observed
is below the LEP limit. For the no slepton mixing sce-
nario we set a mass limit of 129 GeV/c², expecting
157 GeV/c². We do not yet have sensitivity to the
model with reduced lepton decays. The difference be-
tween the expected and observed limits corresponds
to about 2σ and is caused mainly by the excesses ob-
served by the eē and e⁺ē⁻ channels.

Figure 2 also shows a basic projection of these results.
The curves are extrapolated beyond chargino masses
of ~150 GeV/c² for mSUGRA, ~160 GeV/c² for the
W/Z decay model, and ~170 GeV/c² for the scenario
with no slepton mixing. It is also assumed that the
uncertainties scale with the luminosity and that no
improvements are made to the analyses.

4 Conclusion

We have searched for pair production of charginos
and neutralinos in the CDF Run II dataset corresponding
to between 0.7 and 1 fb⁻¹. No significant excess with
respect to the expectation from the standard model
was observed. We show exclusion limits on the pro-
duction cross section times branching ratio as a func-
tion of the chargino mass, and a simple projection to
larger datasets. In one mSUGRA inspired model with
no slepton mixing and degenerate slepton masses, we
can exclude chargino masses below 151 GeV/c² with
95% confidence with the first fb⁻¹.

References

1. LEP SUSY Working Group, LEPSUSYWG/01-03.1
151805.

Fig. 2. Projections and expected and observed limits for
the 3 models. The black curves are the current results,
extrapolated to higher masses.