Anomalies in the Theory of Viscous Energy Losses due to Shear in Rotational MEMS Resonators

Jeffrey L. Dohner, Mark Jenkins, Timothy Walsh, Kelly Klody

Prepared by Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.
Anomalies in the Theory of Viscous Energy Losses
due to Shear in Rotational MEMS Resonators

Jeffrey L. Dohner, Mark Jenkins
MEMS Device Technologies

Timothy Walsh
Computational Solid Mechanics & Structural Dynamics

Kelly Klody
Electromechanical Engineering

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Abstract

In this paper, the effect of viscous wave motion on a micro rotational resonator is discussed. This work shows the inadequacy of developing theory to represent energy losses due to shear motion in air. Existing theory predicts Newtonian losses with little slip at the interface. Nevertheless, experiments showed less effect due to Newtonian losses and elevated levels of slip for small gaps. Values of damping were much less than expected. Novel closed form solutions for the response of components are presented. The stiffness of the resonator is derived using Castigliano’s theorem, and viscous fluid motion above and below the resonator is derived using a wave approach. Analytical results are compared with experimental results to determine the utility of existing theory. It was found that existing macro and molecular theory is inadequate to describes measured responses.
Acknowledgements

The authors would like to thank David Sandison and Jim Redmond for their financial support. They would also like to thank John Torczynki for his technical feedback in the area of molecular modeling and Harold Statfford for his feedback in the area of micro systems and acoustics.
Intentionally Left Blank
Energy Damping Due to Viscous Wave Propagation in a Micro-scale Rotational Resonator

Introduction .. 1
Theory .. 2
Spring Stiffness ... 2
Inertia .. 4
Continuum Assumption and Boundary Conditions ... 4
Fluid Loading on the Top of the Disk ... 5
Fluid Loading on the Bottom of the Disk .. 9
Free Response of Disk ... 9
Experimental Analysis .. 10
Conclusions .. 12
References ... 13
Appendix: A .. 15

List of Figures:

Figure 1: Micro Disk Attached to a Torsional Spring .. 2
Figure 2: Trajectory of Center Line of Torsional Spring .. 3
Figure 3: Parallel Plate Configuration ... 4
Figure 4: Frequency Response of $T_f/\bar{\dot{\theta}}$, - equation 15b, -- high frequency
approximation (equation 16a). ... 8
Figure 5a: Free Response of resonator with $10\mu m$ gap, o-experiment, -- theory 10
Figure 5b: Free Response of resonator with $2\mu m$ gap, A - experiment, -- theory 10
Figure 6: Light photo of resonator during free response, the probe (on left) is used to
release the disk ... 11
Figure 7a: Pressure and vacuum chamber used to vary device environment 12
List of Figures continued:

Figure 7b: Measured Response of Device in Various Pressure Environments: - - at 120mTorr, o - at 0psig, Δ - at 15psig, + - at 30 psig, V - at 45psig......................... 12

Figure 8: Measured and Theoretical Response of Device: o - experimental data for \(g = 10.5\mu m \), Δ - experimental data for \(g = 2.0\mu m \), - theory for \(\sigma_v = 0.01 \) and \(g = 10.5\mu m \), - - theory for \(\sigma_v = 0.01 \) and \(g = 2.0\mu m \).......................... 13
Introduction

In many micromechanical devices, a significant amount of energy is lost due to fluid damping. This can hinder the performance of the device by requiring larger amounts of power, reduced sensitivity, slow structural response, or reduced Q. These losses are often classified into two categories -

- squeeze-film damping and
- damping due to lateral oscillations.

Squeeze-film damping occurs when a fluid is pressed between two surfaces. This pressing produces fluid motion that gives rise to viscous flow and energy loss. This category of energy loss has been well studied using both numerical and closed form analysis, and therefore, will not be discussed here.

Damping due to lateral oscillations occurs due to the shearing of fluid and is far less studied. Y. Cho et al. [1,2] showed that a viscous wave approach can be used to describe this type of energy loss. They produced enhanced predictions of damping in a vibrating comb drive by coupling the motion of the drive to a viscous wave solution. Wenzel [3] also used this type of approach to account for energy losses in a flexural plate wave sensor operating below coincidence. Neglecting edge effects, Wenzel solved for the coupling between the plate and fluid in closed form. Dohner [4] expanded upon Wenzel’s analytical work by including edge effects. He was able to show that a fluid/structure resonance occurs near to coincidence. This resonance can draw enough energy from the plate as to render a sensor nonfunctional. Nevertheless, Dohner did not include the effect of slip conditions.

In the following, a wave approach will be used to determine energy losses from a vibrating disk. Theory will be derived and experiments performed to determine if the damped response of the disk can be predicted using existing theory. It will be shown that this theory is inadequate to describe the response of the disk as the gap between the disk and the substrate is reduced.

Theory

To understand the effects of viscous wave propagation on surface micro-machined devices, test structures were manufactured using SUMMiT V™ technology [5]. Figure 1 illustrates one of these devices [6]. This device consists of an annular disk of inner radius r_i and outer radius r_o. The disk is of thickness t and is a distance g above the substrate. The interior of the disk is connected to a torsional spring with a hub radius of r_h and a thickness, w. The disk and spring are constructed from the same material, polysilicon with Young’s Modulus E and density ρ. The center line of the spring, $r_c(\theta)$, is defined by the equation

$$r_c(\theta) = a - b\theta$$ \hspace{1cm} (1a)

where

$$a = \frac{r_i - r_h}{\theta_h - \theta_i} \theta_h + r_h$$ \hspace{1cm} (1b)

$$b = \frac{r_i - r_h}{\theta_h - \theta_i}$$ \hspace{1cm} (1c)

$r_c(\theta_i) = r_i$ and $r_c(\theta_h) = r_h$. The structure is submerged in air with density ρ_o and with shear viscosity μ_o. Locations on the disk and in the ambient fluid are...
Ambient fluid of density, \(\rho_o \), and viscosity, \(\mu_o \)

Disk constructed from Polysilicon of thickness \(t \)

Spring of width, \(w \), constructed from Polysilicon of thickness, \(t \)

Anchor

Substrate

Gap, \(g \), between disk and substrate

Probe Hole

Figure 1: Micro Disk Attached to a Torsional Spring

defined by using the cylindrical coordinate system \((r, \theta, z)\) where
\((r, \theta, z) = (0, 0, 0)\) is located at the center of the upper surface of the disk and \(\hat{r}, \hat{\theta}, \hat{z}\) are unit vectors. Numerical values for the parameters presented above are given in Table 1 in the Appendix. Two micro disk were considered - one with a gap of 10.5\(\mu m \) and the other with a gap of 2.0\(\mu m \).

The Figure 1 device was modeled by analyzing the forces on the disk due to the stiffness, inertia, and viscosity. The spring was modeled using Castigliano’s theorem; inertia was modeled using the conservation of momentum; and viscous forces on the top and bottom of the disk were modeled using wave theory. Component models were then combined to construct the equation of motion for the device.

Spring Stiffness

Figure 2 is an illustration of the center line of the spring, \(r_c(\theta) \). Using Castigliano’s theorem [7], a closed from solution for the stiffness of the spring was determined. This theorem states that if \(F_s \) is a force applied to the end of the spring and \(u_s \) is a collocated displacement, then

\[
 u_s = \frac{\partial U}{\partial F_s} \tag{2}
\]

where \(U \) is the total energy within the spring.
Assuming that the majority of the energy within the spring is stored in bending,

\[U = \frac{1}{2} \int_{\theta_i}^{\theta_h} M_i^2 \epsilon_c(\theta) d\theta \]

where \(M \) is the moment at any \(r_c(\theta) \), and \(I = tw^3/12 \).

Assuming that \(\theta_h = 2\pi \cdot n + \pi/2 + \theta_i \),

\[M(r(\theta)) = F_s(r_i - r_c(\theta) \sin(\theta)) \]

Substituting (4) into (3) gives,

\[U = \frac{F_s^2}{2EI} \int_{\theta_i}^{\theta_h} (r_i - r_c(\theta) \sin(\theta))^2 r_c(\theta) d\theta \]

and substituting (1) into (5a), expanding and integrating gives

\[\frac{u_s}{F_s} = \frac{1}{K} = \frac{1}{EI} \left\{ \frac{a r_i^2 \theta + b r_i^2 \theta^2}{2} \right\} \]

+ \[2a^2 r_i \cos\theta + 4abr_i, (\sin\theta - \cos\theta) \]

- \[2b^2 r_i (2\sin\theta - (\theta^2 - 2) \cos\theta) \]

\[+ a^3 \left(\frac{\theta}{2} \right) \left(\frac{1}{4} \sin 2\theta \right) \]

- \[3a^2 b \left(\frac{\theta^2}{4} - \frac{\theta}{4} \sin 2\theta - \frac{\cos 2\theta}{8} \right) \]

+ \[3ab^2 \left(\frac{\theta^3}{6} - \left(\frac{\theta^2}{4} - \frac{1}{8} \right) \sin 2\theta - \frac{\theta}{4} \sin 2\theta \right) \]

\[- b^3 \left(\frac{\theta^4}{8} - \left(\frac{\theta^3}{4} - \frac{3\theta}{8} \right) \sin 2\theta \right) \]

where \(K \) is the collocated linear stiffness of the spring. If \(T_s \) is the torque that spring exerts on the disk, then

\[K = \frac{T_s}{\theta} = Kr_i^2 \]

where \(K \) is the torsional stiffness of the spring.
Inertia
Using standard methods, the torque on the disk, \(T_d \), due to inertial effects can be found as

\[
M = \frac{T_d}{\bar{v}} = \frac{\pi \rho t}{2} (r_o^4 - r_i^4).
\]

Continuum Assumption and Boundary Conditions
In this paper, it is assumed that the fluid is air. Since the mean free path of air at standard conditions is \(\lambda = 0.06 \mu m \) [8], 175 mean free paths exist between the disk and substrate of a device with \(g = 10.5 \mu m \) and 33 mean free paths exist between the disk and substrate of a device with a gap of 2.0 \(\mu m \). Moreover, the shear velocity in air is \(c_s = \sqrt{\frac{2 \omega \mu}{\rho}} \). For \(f = 1000 Hz \), there are 5123 mean free paths. Therefore, the assumption of air being a continuum is reasonable for frequencies at below \(f = 1000 Hz \) and geometries discussed here.

Boundary conditions are dependent upon the Knudsen number, \(Kn \), which is equal to the mean free path over a characteristic distance [8,9]. For flat parallel plates, the characteristic distance is \(g \). For \(g = 10.5 \mu m \), \(Kn = 0.0057 \) which is in the no slip region. For \(g = 2.0 \mu m \), \(Kn = 0.03 \) which is in the slip range. Therefore, slip boundary conditions must be considered.

From existing theory, the effect of slip at the boundaries can be examined. Consider the case of two parallel plates - one fixed and the other traveling at a velocity of \(U_w \) (Figure 3). If \(Kn = 0.03 \) then, from existing theory, the slip condition must be considered but the fluid can still be treated as Newtonian. From molecular theory [9]

\[
U_t + \zeta \frac{\partial U}{\partial z} \bigg|_{z = g} = U_w \quad \text{(7a)}
\]

\[
U_b = \zeta \frac{\partial U}{\partial z} \bigg|_{z = 0} \quad \text{(7b)}
\]

where

\[
\zeta = \frac{2 - \sigma_v \lambda}{\sigma_v} \quad \text{(7c)}
\]

\(\sigma_v \) is the tangential momentum accommodation coefficient (a value between 0.2 and

![Figure 3: Parallel Plate configuration](image)

4 of 15
0.8), U_i is the velocity of the fluid near to the moving plate and U_b is the velocity of the fluid near to the fixed plate. Assuming a linear velocity distribution through the gap, this gives

$$
\begin{bmatrix}
U_i \\
U_b
\end{bmatrix} = \begin{bmatrix}
1 + \xi/g \\
1 + 2(\xi/g)
\end{bmatrix} \begin{bmatrix}
\xi/g \\
1 + 2(\xi/g)
\end{bmatrix} U_w. \quad (7d)
$$

For example, for air with $\sigma_v = 0.8$, $g = 2.0 \mu m$,

$$
\begin{bmatrix}
U_i \\
U_b
\end{bmatrix} = \begin{bmatrix}
0.958 \\
0.041
\end{bmatrix} U_w. \quad (7e)
$$

As can be seen from this example, existing theory states that the slip condition is important, but not dominant. For this example, the variation in boundary conditions with and without this condition is less than 5%. Nevertheless, as will be shown later, just the opposite is true. The slip condition dominates the response.

Fluid Loading on the Top of the Disk

The interaction of waves on top of the disk is complex. In this section, we will develop a closed form solution for fluid loading on the top of the disk using a wave approach.

For wave propagation in a viscous fluid, the velocity of the fluid can be represented by

$$
\dot{\mathbf{u}} = \nabla \phi + \nabla \times \mathbf{\psi} \quad (8a)
$$

where ϕ is a scalar potential function, and $\mathbf{\psi}$ is a vector potential. Since $\mathbf{\psi}$ has no dilatational component, we applied the additional constraint,

$$
\nabla \cdot \mathbf{\psi} = 0. \quad (8b)
$$

Moreover, from Figure 1, only shear waves will result from the motion of the disk.

These shear waves will have a displacement component only in the $\hat{\theta}$ direction. Therefore, $\phi = 0$, $\dot{\mathbf{u}} = u_0 \hat{\theta}$, and

$$
\mathbf{\psi} = \psi_r \hat{r} + \psi_z \hat{z}. \quad (8c)
$$

Thus, equations 8a and b become [10],

$$
u_0 = -\left(\frac{\partial \psi_z}{\partial r} - \frac{\partial \psi_r}{\partial z}\right) \quad \text{and} \quad (9a)
$$

$$
\frac{1}{r \partial r}(r \psi_r) + \frac{\partial \psi_z}{\partial z} = 0 \quad (9b)
$$

In cylindrical coordinates, the equations of motion for a shear wave propagating in a viscous fluid [11,12] are given by

$$
\frac{1}{\nu_0 \partial t} \frac{\partial \psi_r}{\partial r} = \nabla^2 \psi_r - \frac{\psi_r}{r} \quad (10a)
$$

$$
\frac{1}{\nu_0 \partial t} \frac{\partial \psi_z}{\partial z} = \nabla^2 \psi_z \quad (10b)
$$

where

$$
\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r \partial r} + \frac{\partial^2}{\partial z^2} \quad (10c)
$$

and $\nu_0 = \mu_0/\rho_0$ is the kinematic viscosity of the fluid. From equation 7abc, the boundary conditions are given by

$$
\left. \dot{\mathbf{u}} - \frac{\partial}{\partial z} (\mathbf{u} \cdot \hat{z}) \right|_{z=0} = 0
$$

$$
= \left\{ \begin{array}{ll}
\dot{r} \hat{\theta} & \text{for } r_i \leq r \leq r_o \\
0 & \text{otherwise}
\end{array} \right. \quad (10d)
$$

Equations 10a-d represent the equations of motion and boundary conditions required to describe wave motion above the disk. We will first transform these equation into the Laplace domain and then into the Hankel domain and then inverse transform them to obtain a closed form solution for the torque on the top of the disk.
For zero initial conditions, the Laplace transform of 10a and b is given by

\[0 = \nabla^2 \varphi_r \frac{\varphi_r - s}{v_o} \varphi_r \] (11a)
\[0 = \nabla^2 \varphi_z \frac{\varphi_z - s}{v_o} \varphi_z \] (11b)

where \(\varphi_r(s) = \int \psi_r(t)e^{-st}dt \) and
\[\varphi_z(s) = \int \psi_z(t)e^{-st}dt. \] The Laplace transform of 9b is given by

\[\frac{1}{r} \frac{\partial}{\partial r}(r\varphi_r) + \frac{\partial \varphi_z}{\partial z} = 0. \] (11c)

Substituting 9a into 10d and taking the Laplace transform gives

\[\left(u_0 - \frac{\partial u_0}{\partial z} \right) \bigg|_{z=0} = \left(\frac{\partial \varphi_z}{\partial r} - \frac{\partial \varphi_r}{\partial z} \right) \bigg|_{z=0} = 0 \]
\[= \begin{cases} \hat{\theta}r & \text{for } r_i \leq r \leq r_o \\ 0 & \text{otherwise} \end{cases} \] (11d)

where \(u_0 = \int u_0(t)e^{-st}dt. \)

Equations 11a-d represent the equations of motion and boundary conditions in the Laplace domain. Next, we will transform these equations into the Hankel domain.

Taking the Hankel transform \([13,14]\) of order one of equations 11a and the Hankel transform of order zero of equation 11b gives

\[\left\{ \frac{\partial^2}{\partial z^2} - \left(\frac{\gamma^2 + s}{v_o} \right) \right\} \varphi_r = 0 \] (12a)
\[\left\{ \frac{\partial^2}{\partial z^2} - \left(\frac{\gamma^2 + s}{v_o} \right) \right\} \varphi_z = 0 \]

where \(\mathcal{H}(\varphi_r) = \varphi^1 \int \varphi_r J_0(\gamma r) r dr, \)
\(\mathcal{H}(\varphi_z) = \varphi^0 \int \varphi_z J_0(\gamma r) r dr. \) Taking

the Hankel transform of order zero of equation 11c and noting that

\[\mathcal{H}_0\left(\frac{1}{r} \frac{\partial}{\partial r}(r\varphi_r) \right) = \gamma \varphi_r \] gives

\[\gamma \varphi_r + \frac{\partial \varphi_z}{\partial z} = 0. \] (12c)

Taking the Hankel transform of order one of equation 11d and noting that

\[\mathcal{H}_0\left(\frac{\partial^2 \varphi_z}{\partial r^2} \right) = -\gamma^0 \varphi_z \] gives

\[\left(u_0 - \frac{\partial u_0}{\partial z} \right) \bigg|_{z=0} = \left(\frac{\partial \varphi_r}{\partial z} + \gamma \varphi_z \right) \bigg|_{z=0} = 0 \]
\[= \hat{\theta} \frac{2}{\gamma} J_2(\gamma r) \] (12d)

where \(\hat{u}_0 = \mathcal{H}(u_0(s)). \)

The solution to equations 12a and b is given by

\[\varphi_r = Ae^{kz} \text{ and } \varphi_z = Be^{kz} \] (13a,b)

where \(k = \sqrt{\frac{\gamma^2 + s}{v_o}} \) and \(A \) and \(B \) are unknown constants. Substituting equations 13a, and b into equations 12c,d, solving for the unknowns constants and substituting back into equations 13a,b gives

\[\varphi_r = \frac{\hat{\theta} \frac{k}{s v_o} e^{kz}}{1 + \zeta k} J_2(\gamma r) \bigg|_{r_i} \]
\[\varphi_z = \frac{\hat{\theta} \frac{k}{s v_o} e^{kz}}{1 + \zeta k} J_2(\gamma r) \bigg|_{r_i} \] (14a)
In the \(\gamma \) (Hankel) domain, the shear stress on the top of the disk is given by

\[
\varphi_z = -\frac{\dot{\theta}}{s\sqrt{\nu}} e^{\frac{kz}{1 + \zeta k}} r J_2(\gamma r) \bigg|_{r_i}^{r_o}.
\] \(14b\)

Substituting 14a and b into the Hankel transform of 11c and the result into 14c gives,

\[
\tau^1 = \mu_o \dot{\theta} \frac{k}{\gamma(1 + \zeta k)} r J_2(\gamma r) \bigg|_{r_i}^{r_o}.
\] \(14d\)

Taking the inverse Hankel transform of order one gives

\[
\tau(r) = \mathcal{H}^{-1}_{\gamma}(\tau^1) = \int_0^\infty J_1(\gamma r) \gamma d\gamma
\] \(14e\)

Notice that \(J_2(\eta) \) goes to \(\frac{1}{\sqrt{\eta}} \) as \(\eta \to \infty \) and that \(k \to \gamma \) for \(\gamma \to \infty \), it can be shown that \(\tau^1 \) does not go to zero as \(\gamma \to \infty \) for \(\zeta = 0 \). Therefore, the integrand of the integral in equation 14e is not bounded for all \(r \) without slip at the interface. Nevertheless, the torque \(T_{f_i} \) on the top of the disk can still be determined for any \(\zeta \). Noting that

\[
T_{f_i} = 2\pi \int_{r_i}^{r_o} r^2 \tau dr,
\] \(15a\)

and substituting equation 14e into equation 15a, shifting the order of integration and simplifying gives

\[
C_1 = \frac{T_{f_i}}{\dot{\theta}} = 2\pi \mu_o \int_0^\infty \frac{k}{(1 + \zeta k)(r^2 J_2(\gamma r))^2} d\gamma
\] \(15b\)

Note that for all values of \(\gamma \), the integrand in equation 15b is bounded. Thus, equation 15b can be evaluated numerically using Newton-Cotes integration formulas [15].

Equation 15b is a closed form solution for the loading on top of the disk. This loading takes on an interesting form. If we let \(s = i\omega \), then the frequency response of this loading can be plotted. This is shown in Figure 4 for \(g = 10.5 \mu m \). For \(0 \leq \zeta \leq 0.8 \), the response of this plot varies little with \(\zeta \). Notice that at low frequencies the phase of this response is zero and the magnitude is a constant. Therefore, the transfer function between torque and rotation rate is a constant. Nevertheless, as the frequency is increased, the slope of the magnitude goes to \(10dB/\text{decade} \) and the phase goes to 45°. This represents the response of the irrational transfer function,

\[
\tau(r) = \mathcal{H}^{-1}_{\gamma}(\tau^1) = \frac{1}{\sqrt{\eta}}(r_o^2 J_2(\gamma r_o) - r_i^2 J_2(\gamma r_i)) J_1(\gamma r) d\gamma
\] \(16a\)

where \(E \) is a constant. The value of \(E \) can be determined by returning to equation 15e and letting \(\omega \to \infty \) and \(\zeta = 0 \). This equation becomes

\[
\tau(r) = \mu_o \dot{\theta} \frac{1}{\sqrt{\eta}} \int_{r_i}^{r_o} \left(r_o^2 J_2(\gamma r_o) - r_i^2 J_2(\gamma r_i) \right) J_1(\gamma r) d\gamma
\] \(16b\)

However, noting that

\[
\mathcal{H}(r \{ H(r - r_o) - H(r - r_i) \})
\]
Figure 4: Frequency Response of $T_{f_1}/\dot{\theta}$, - equation 15b, -- high frequency approximation (equation 16a).

\[
E = \frac{\pi (r_o^4 - r_i^4)}{2} \sqrt{\frac{\rho_o \mu_o}{\gamma}} .
\]

Equation 16a is also shown in Figure 4.

Fluid Loading on the Bottom of the Disk

If g is much smaller than the shear wavelength, then the velocity field varies almost linearly across the gap. Assuming a linear velocity distribution, the incremental force on the disk is given by

\[
\tau(r) = \begin{cases}
\mu_o \dot{\theta} r \sqrt{\frac{s}{\gamma}} & \text{for } r_i \leq r \leq r_o \\
0 & \text{otherwise}
\end{cases}
\]

Substituting 16d into 15a gives equation 16a where $H(r)$ is a Heaviside function [10], equation 16b becomes
Integrating (17a) over the limits of the disk gives,

\[C_2 = \frac{T_{r_2}}{\hat{\theta}} = \frac{\pi \mu_o}{2g(1 + \zeta / g)} (r_o^4 - r_i^4) \]

where \(T_{r_2} \) is the total torque on the disk due to the fluid within the gap.

If \(g \) is large, the wave solution must be solved for within the gap. This is performed by returning to equations 13a,b and including wave effects in the positive and negative axial \(z \) directions. These equations take the form

\[-kz \phi_r = Ae^{kz} + Be^{-kz} \quad \text{and} \quad \phi_z = Ce^{kz} + De^{-kz}. \]

(18b)

where \(k = \sqrt{k^2 + \frac{s}{V_o}} \) and \(A, B, C, \) and \(D \) are unknown constants. Using the boundary conditions

\[\left(\hat{\theta} - \zeta \frac{\partial}{\partial z} (\hat{\theta} \cdot \hat{\theta}) \right)_{z = g} = \hat{\theta} r \hat{\theta} \]

for \(r_i \leq r \leq r_o \) \hspace{1cm} (19a)

and

\[\left(\hat{\theta} - \zeta \frac{\partial}{\partial z} (\hat{\theta} \cdot \hat{\theta}) \right)_{z = 0} = 0 \]

for \(r_i \leq r \leq r_o \) \hspace{1cm} (19b)

gives

\[\dot{x} = F \quad \text{and} \quad \theta = C \dot{x}. \]

(20a)

Free Response of the Disk in Fluid

The free response of the Figure 1 device can be found by forming a rational model, applying initial conditions, and simulating. Combining equations 6b, 7, 8b, and 15b gives

\[\frac{T}{\hat{\theta}} = \frac{1}{Ms^2 + Cs + K} \]

(21a)

where \(C = C_1 + C_2 \).

With the aid of an inverse Discrete Fourier Transform [16] and curve fitting techniques, the state space representation can be found as

\[\dot{x} = Ax + BT \]

(22a)

\[\theta = C \dot{x}. \]

(22b)

The free response of the disk for \(g = 10.5 \mu m \) is shown in Figure 5a. The resonate frequency was about 200Hz and the damping ratio was about 0.16. The free response of the disk for \(g = 2.0 \mu m \),
shown in Figure 5b, had a damping ratio of 0.7.

Experimental Analysis

Experimental analysis was performed to validate the above damping model. Devices were manufactured using SUM-MiT V™ technology [5] and testing was performed in air at room temperature and pressure.

By using a micro probe to move the disk to a desired angular location (i.e. 45°) and releasing the disk by lifting up on the probe, the free response of the disk could be measured on a high speed camera (see Figure 6).
Experimental results are shown in Figure 5a and b. These results show that both the 10.5 and 2.0 μm devices had resonate frequencies around 200Hz, and surprisingly, both had damping ratios of about 0.1. The response of the device with a 10.5 μm gap and that with a 2.0 μm gap were almost the same.

To confirm that this was not an error in the measurement process or design, the poly layers of the two devices were rechecked, and the coating on the structure reexamined. The poly layers designs were confirmed to be correct and the structure was CO₂ dried. Therefore, no coatings existed on the surface that could alter damping. To confirm that residual stress was not producing variations in the gap, laser interferometry, SEM, and atomic force microscopy were used. As verified by laser interferometry, little variation in the static deflection of the structure occurred. Less than 0.5 μm of static deflection occurred in the 2 μm device and less than 1.0 μm of static deflection occurred in the 10.5 μm device. Moreover, using atomic force microscopy and a SEM, the gap between the top of the disk and the substrate was confirmed to be correct. As a further validation that the experiments were performed correctly, they were repeated for different devices on different modules. The results were the same.

Tests were also performed in vacuum and under pressure (see Figure 7a). The effect of a pressure change was to alter the mean free path of the air. In Figure 7b plots of these results are shown. An increase in pressure did little to alter the response of the disk. Nevertheless, as the pressure was dropped to a vacuum, the response became very lightly damped as expected.

Conclusions

As shown above, results did not match theory. From existing theory [8,9], the zero velocity condition at the wall should have been nearly valid. The Knudsen number \((Kn)\) for the 2.0 μm device was 0.03 which places the fluid in the Newtonian region with small slip. The Knudsen number of the 10.5 μm device was 0.0057 which places the fluid in the zero slip
Therefore, existing theory states that the fluid should have been able to be treated as Newtonian with little slip at the walls. Nevertheless, the opposite was true. If existing theory is wrong and a strong slip condition existed at the wall, these results could be better explained. The slip condition would dominate the force on the plate and therefore, the response would not be a function of the gap. As shown in Figure 8, two devices, similar in every respect except the gap, would have similar responses. The problem with this explanation is that the accommodation coefficient would have to be much smaller. As was stated earlier, this coefficient is usually between 0.2 and 0.8. Nevertheless, as shown in Figure 8, an accommodation coefficient of 0.01, comes close to mea-

![Figure 7a: Pressure and vacuum chamber used to vary MEMS environment](image)

![Figure 7b: Measured Response of Device in Various Pressure Environments: - - at 120mTorr, o- at 0psig, Δ - at 15psig, + - at 30 psig, ∇ - at 45psig.](image)
Figure 8: Measured and Theoretical Response of Device: o - experimental data for $g = 10.5 \mu m$, Δ - experimental data for $g = 2.0 \mu m$, - - theory for $\sigma_v = 0.01$ and $g = 10.5 \mu m$, - - theory for $\sigma_v = 0.01$ and $g = 2.0 \mu m$.

sured data. An accommodation coefficient of this size would imply that little molecular energy is lost when an air molecule strikes the wall.

The present research points to the fact that existing theory for air damping in micro devices is incomplete. Further research is needed to better understand what is happening at the surface of these devices. This could have significant impact in reducing the losses in MEMS.

References

6. The original concept for this device was developed by Kelly Klody, Electromechanical Engineering, Sandia National Laboratories.

Appendix: A:

Table 1: Parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>r_o</th>
<th>r_l</th>
<th>r_h</th>
<th>t</th>
<th>g</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical value and dimensions</td>
<td>400μm</td>
<td>160μm</td>
<td>30μm</td>
<td>2.25μm</td>
<td>10.5μm</td>
<td>2.5μm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ρ_o</th>
<th>μ_o</th>
<th>E</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical value and dimensions</td>
<td>1.197×10^{-18} (kg/μm³)</td>
<td>18×10^{-12} (μN·s/μm²)</td>
<td>160000 (μN/μm²)</td>
<td>2.32×10^{-15} (kg/μm³)</td>
</tr>
</tbody>
</table>

The above data can be obtained from the following references:

Distribution List

R. Howe
Ept. of EECS
231 Cory Hall
Berkeley CA 94720-1770 USA

H. Stafford
University of Oklahoma
Aerospace & Mechanical Eng.
100 East Boyd, Room 510
Norman, Oklahoma 73019-1006

MS0899 9616 Tech. Library (2)