Hydrogeologic Characterization of the U-3bl Collapse Zone

PDF Version Also Available for Download.

Description

The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows ... continued below

Creation Information

Services, NSTec Geotechnical September 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing. Borehole U-3bl-D2 is a 45-degree-angle hole drilled from the edge of the crater under the waste cell to intercept the U-3bl collapse zone, the disturbed alluvium between the crater (surface collapse sink) and the nuclear test cavity. A casing-advance system with an air percussion hammer was used to drill the borehole, and air was used as the drilling fluid. Properties of the U-3bl crater collapse zone were determined from cores collected within the interval, 42.1 to 96.6 meters (138 to 317 feet) below the ground surface. Selected core samples were analyzed for particle density, particle size, bulk density, water retention, hydraulic conductivity, water content, water potential, chloride, carbonate, stable isotopes, and tritium. Physical and hydraulic properties were typical of alluvial valley sediments at the NTS. No visual evidence of preferential pathways for water transport was observed in the core samples. Soil parameters showed no trends with depth. Volumetric water content values ranged from 0.08 to 0.20 cubic meters per cubic meter, and tended to increase with depth. Water-retention relations were typical for soils of similar texture. Water potentials ranged from -1.9 MegaPascals at a depth of 42.10 meters (138 feet) to -0.4 MegaPascals at 94.58 meters (310 feet), generally increasing with depth. Relationships between hydraulic conductivity and water content were typical of sandy soil, with hydraulic conductivity decreasing rapidly as the soil dried. Variability of hydraulic conductivity reflected layering and showed no trend with depth. Stable isotope compositions were typical of water that had infiltrated during cooler past climate conditions. Uniformity of concentrations versus depth indicated that evaporation was not occurring at the sampled interval. Tritium concentrations in pore water ranged from 2.68 x10{sup 3} to 1.22 x 10{sup 4} picoCuries per liter, which are greater than expected from atmospheric deposition of tritium, but not at a level to raise environmental concerns. The tritium is most likely a product of nuclear testing.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/NV/25946--042
  • Report No.: DOE/NV/11718--1271
  • Grant Number: DE-AC52-06NA25946
  • DOI: 10.2172/917719 | External Link
  • Office of Scientific & Technical Information Report Number: 917719
  • Archival Resource Key: ark:/67531/metadc887651

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Oct. 31, 2016, 8:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Services, NSTec Geotechnical. Hydrogeologic Characterization of the U-3bl Collapse Zone, report, September 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc887651/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.