Mineralogic Residence and Desorption Rates of Sorbed 90Sr in Contaminated Subsurface Sediments: Implications to Future Behavior and In-Ground Stability

PDF Version Also Available for Download.

Description

90Sr desorption process will be quantified in coarse-textured Hanford sediments contaminated by different waste types and a reaction-based reactive transport model developed to forecast 90Sr concentration dynamics in Hanford's 100-N plume. Previous research has addressed 137Cs desorption from HLW-contaminated sediment providing results critical for HLW tank farm closure decisions. This renewal focuses on 90Sr with the objective of providing fundamental knowledge to predict future in-ground behavior as required for sound remedial decisions. Preliminary observations that suggest that 10-y sorbed 90Sr in coarse-textured sediment resides in the interiors of basaltic lithic fragments. This intraparticle retention defines a new conceptual model for ... continued below

Creation Information

Lichtner, Peter C. June 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

90Sr desorption process will be quantified in coarse-textured Hanford sediments contaminated by different waste types and a reaction-based reactive transport model developed to forecast 90Sr concentration dynamics in Hanford's 100-N plume. Previous research has addressed 137Cs desorption from HLW-contaminated sediment providing results critical for HLW tank farm closure decisions. This renewal focuses on 90Sr with the objective of providing fundamental knowledge to predict future in-ground behavior as required for sound remedial decisions. Preliminary observations that suggest that 10-y sorbed 90Sr in coarse-textured sediment resides in the interiors of basaltic lithic fragments. This intraparticle retention defines a new conceptual model for 90Sr retardation that is tentatively attributed to internal domains of phyllosilicates formed from the weathering of basaltic glass. Research will characterize the spatial locations, composition, and reactivity of these intragrain phyllosilicate domains using spectroscopic, microscopic, and wet chemical methods. Intragrain porosity, diffusivity, and tortuosity will be estimated using emersion experiments coupled with particle imaging (using electron, X-ray, and NMR techniques). Desorption rates and extent will be measured from contaminated Hanford sediments of different waste impact in electrolytes that promote isotopic exchange, ion exchange, and/or dissolution. Desorption results will be interpreted with a geochemical-physical model that incorporates aqueous speciation, mass transfer, and other important factors. Batch and column experiments will be performed with sediments from Hanfords 100-N plume to quantify factors controlling long-term release rates and river stage effects. Newfound understanding and geochemical parameters will be incorporated into the FLOTRAN reactive transport code for simulation of 100-N plume dynamics.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ERSD-1022407-2006
  • Grant Number: None
  • DOI: 10.2172/896026 | External Link
  • Office of Scientific & Technical Information Report Number: 896026
  • Archival Resource Key: ark:/67531/metadc887571

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 4:33 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lichtner, Peter C. Mineralogic Residence and Desorption Rates of Sorbed 90Sr in Contaminated Subsurface Sediments: Implications to Future Behavior and In-Ground Stability, report, June 1, 2006; Los Alamos, New Mexico. (digital.library.unt.edu/ark:/67531/metadc887571/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.