TMAP2000 Use

PDF Version Also Available for Download.

Description

The TMAP Code was written in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it was upgraded to TMAP4 and used in numerous applications including experiments supporting fusion safety predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its further upgrade to TMAP2000 was accomplished in response to several needs. TMAP and TMAP4 had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP2000 has been revised to include up to three separate traps and to keep ... continued below

Creation Information

Longhurst, Glen Reed; Merrill, Brad Johnson & Jones, James Litton October 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The TMAP Code was written in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it was upgraded to TMAP4 and used in numerous applications including experiments supporting fusion safety predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its further upgrade to TMAP2000 was accomplished in response to several needs. TMAP and TMAP4 had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP2000 has been revised to include up to three separate traps and to keep track separately of each of up to 10 diffusing species in each of the traps. A difficulty in the original code dealing with heteronuclear molecule formation such as HD and DT has been removed. Under equilibrium boundary conditions such as Sieverts' law, TMAP2000 generates heteronuclear molecular partial pressures when solubilities and partial pressures of the homonuclear molecular species and the equilibrium stoichiometry are provided. A further sophistication is the addition of non-diffusing surface species and surface binding energy dynamics options. Atoms such as oxygen or nitrogen on metal surfaces are sometimes important in molecule formation with diffusing hydrogen isotopes but do not themselves diffuse appreciably in the material. TMAP2000 will accommodate up to 30 such surface species, allowing the user to specify relationships between those surface concentrations and populations of gaseous species above the surfaces. Additionally, TMAP2000 allows the user to include a surface binding energy and an adsorption barrier energy and includes asymmetrical diffusion between the surface sites and regular diffusion sites in the bulk. All of the previously existing features for heat transfer, flows between enclosures, and chemical reactions within the enclosures have been retained, but the allowed problem size and complexity have been significantly increased to take advantage of the greater memory and speed available on modern computers. This report provides users of TMAP2000 with the specialized information they will need to properly construct the input files used with the code. It assumes the user has and is familiar with the TMAP4 Users Manual, and it focuses on changes from TMAP4 input file requirements.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INEEL/EXT-00-01337
  • Grant Number: DE-AC07-99ID-13727
  • DOI: 10.2172/911444 | External Link
  • Office of Scientific & Technical Information Report Number: 911444
  • Archival Resource Key: ark:/67531/metadc887556

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2000

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 11:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Longhurst, Glen Reed; Merrill, Brad Johnson & Jones, James Litton. TMAP2000 Use, report, October 1, 2000; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc887556/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.