
UCRL-JRNL-205743

NIC-based Reduction Algorithms
for Large-scale Clusters

F. Petrini, A. T. Moody, J. Fernandez, E.
Frachtenberg, D. K. Panda

August 5, 2004

International Journal of High Performance Computing and
Networking

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

NIC-based Reduction
Algorithms for Large-scale
Clusters

Fabrizio Petrini1, Adam Moody2, Juan Fernández3,
Eitan Frachtenberg1 and Dhabaleswar K. Panda4

1Computer and Computational Sciences (CCS) Division,
Los Alamos National Laboratory, NM 87545, USA

2Integrated Computing and Communications Department,
Lawrence Livermore National Laboratory, CA, 94550, USA

3Computer Engineering Department,
University of Murcia, 30071 Murcia, Spain

4Department of Computer & Information Science,
The Ohio State University, Columbus, OH 43210, USA

Abstract: Efficient algorithms for reduction operations across a group of pro-
cesses are crucial for good performance in many large-scale, parallel scientific
applications. While previous algorithms limit processing to the host CPU, we
utilize the programmable processors and local memory available on modern clus-
ter network interface cards (NICs) to explore a new dimension in the design of re-
duction algorithms. In this paper, we present the benefits and challenges, design
issues and solutions, analytical models, and experimental evaluations of a fam-
ily of NIC-based reduction algorithms. Performance and scalability evaluations
were conducted on the ASCI Linux Cluster (ALC), a 960-node, 1920-processor
machine at Lawrence Livermore National Laboratory, which uses the Quadrics
QsNet interconnect. We find NIC-based reductions on modern interconnects to
be more efficient than host-based implementations in both scalability and con-
sistency. In particular, at large-scale—1812 processes—NIC-based reductions of
small integer and floating-point arrays provided respective speedups of 121% and
39% over the host-based, production-level MPI implementation.

Keywords: cluster computing; reduce; allreduce; Quadrics QsNet; NIC-based
operations; collective communication.

Reference to this paper should be made as follows: Petrini, F., Moody, A.,
Fernández, J., Frachtenberg, E. and Panda, D. K. (2005) ‘NIC-based Reduction
Algorithms for Large-scale Clusters’, International Journal of High-Performance
Computing and Networking, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Fabrizio Petrini is a member of the technical staff of the
CCS3 group of the Los Alamos National Laboratory (LANL). He received his
PhD in Computer Science from the University of Pisa in 1997. Adam Moody
is a member of the Integrated Computing and Communications Department
at Lawrence Livermore National Laboratory. He received his BS and MS de-
grees from The Ohio State University in 2001 and 2003, respectively. Juan
Fernández is an assistant professor of the Computer Engineering Department at
the University of Murcia. He received his BS and MS degrees from the University
of Murcia in 1995 and 1997, respectively. Eitan Frachtenberg is a Director’s
postdoctoral fellow at LANL. He received his BS, MS, and PhD degrees from
the Hebrew University of Jerusalem in 1993, 2001, and 2003, respectively. Dha-
baleswar Panda is a professor of Computer Science and Engineering and leads
the Network-Based Computing Research Group at The Ohio State University.
He received a PhD in Computer Engineering from the University of Southern
California.

1

1 Introduction

Reduction collectives are essential components of
many high-performance computing (HPC) applica-
tions. Recent performance evaluation studies show
that large-scale scientific simulations spend up to 60%
of their time executing reductions [22]. In-depth anal-
ysis of the scientific workload at Lawrence Livermore
National Laboratory shows similar results [12]. Conse-
quently, faster reduction algorithms can substantially
shorten the run times of many scientific applications.

Development of efficient reduction algorithms has
proven to be a rich area of research. Reduction col-
lectives entail both communication (data transfer) and
processing (data reduction operations), and therefore
efficient implementations must consider the character-
istics of the network, the processor, and the interac-
tions between them. Over the years, many researchers
have dedicated significant effort to derive optimal and
scalable algorithms [1, 2, 3, 4, 5, 8]. However, with
respect to the underlying system characteristics, all
of this work commonly assumed reduction processing
must be performed by the host CPU.

Network interface cards (NICs) for modern cluster
interconnects, such as the Elan3 used in Quadrics Qs-
Net [20], provide programmable processors and ample
memory. This added capability allows more function-
ality to be delegated to the NIC processor. The terms
host-based and NIC-based are used to indicate where
functionality is implemented. The focus of this paper is
on the implementation of NIC-based reduction. That
is, we examine the process of delegating both the com-
munication and the data-processing tasks of reduction
collectives to the network interface card.

This article makes the following contributions. First
we discuss the benefits of NIC-based reduction, and
describe the design issues and solutions we developed.
We then present a detailed model to analyze and pre-
dict the performance of reduction algorithms on the
Quadrics network. Finally, we present experimental
evaluations to validate our analytical model and ex-
amine the scalability of our algorithms.

From this work we show that NIC-based reduction
exhibits better scalability and improved consistency
over host-based algorithms. This is especially true for
classes of reductions that are frequently used in large-
scale, parallel scientific applications. For example, for
summation of single-element vectors of 32-bit integers
and 64-bit floating-point values over 1812 processors of
the ASCI Linux Cluster (ALC) [26], NIC-based reduc-
tion was, respectively, 121% and 39% faster than with
the production-level, host-based MPI library. More-
over, the standard deviations in timings for the NIC-

based case were as much as two orders of magnitude
smaller than those for the host-based case.

2 Related Work

Huang and McKinley were possibly the first to realize
the potential of NIC-based collectives [16]. They
examined the use of implementing broadcast and
barrier operations on Asynchronous Transfer Mode
(ATM) network adapters to avoid the excessive
processing overhead incurred in the software protocol
stack. To maintain portability to even the most
limited ATM devices, Huang and McKinley placed
rigid restrictions on the processing and memory
requirements of their algorithms. Specifically, their
algorithms were table-driven and performed a small
number of arithmetic and logical operations on a few
scalar variables. Even with such limitations, these
NIC-based collectives scaled significantly better than
host-based versions.

Modern cluster interconnects removed the software
bottleneck from the protocol stack by using zero-copy,
user-level protocols. However, the same interconnects
have also dramatically reduced wire and switch la-
tencies in the network, so that now just the cost of
transferring data between the host CPU and the net-
work interface contributes significant overhead. At
the same time the processing capability and memory
available on network interface cards have increased.
Consequently, NIC-based collectives are still valuable
and their implementation is now more practical, which
leads researchers to investigate ever more complex
NIC-based operations and algorithms.

Several recent studies have considered NIC-based
multicast algorithms [6, 11, 14, 18, 28, 30]. Multi-
cast is a complex operation which must accommodate
varying message sizes and destination sets, and address
flow control, acknowledgment collection, and reliabil-
ity. These studies take different approaches to meeting
these requirements, still the authors generally conclude
that modern NICs are capable of executing multicast
more efficiently than host-based implementations.

The work most closely aligned with our own is that
of Buntinas and Panda [10]. They investigated the po-
tential of NIC-based reduction on clusters connected
with Myrinet [7]. In particular, they modified the net-
work drivers to implement binary AND and OR op-
erations, and integer and floating-point addition of a
single 64-bit value via binomial trees. For these cases
they found that NIC-based reduction has better scal-
ability than host-based reduction, and yields perfor-
mance gains in clusters with as few as 8 nodes. While
their implementation provides some additional flexibil-

2

ity, they leave the investigation of more complicated
reductions as future work.

This paper picks up where their work left off. We in-
vestigate the use of different communication patterns
and a range of data sizes for an expanded set of reduc-
tion operations, as well as an optimization for multi-
element data vectors. In addition, we propose an accu-
rate parameterized model which can be used to analyze
and select the best implementation for a given instance
of a reduction. Finally, we test our implementations at
a dramatically increased scale, running on a machine
using as many as 906 nodes.

3 Motivation and Background

NIC-based collectives have both advantages and dis-
advantages over traditional host-based approaches.
This section first discusses the relevant benefits
and challenges of NIC-based approaches. We then
detail our particular design goals and development
environment.

3.1 Benefits of NIC-based Reduction

On modern interconnects, NIC-based collectives are
significantly faster than host-based versions. Efficient
collective implementations typically require a set of
nodes to exchange a series of related messages. In
host-based implementations, each message in the se-
ries must be passed between the host processor and
the network interface via IO-bus transactions. NIC-
based implementations, on the other hand, handle
messages immediately at the NIC, eliminating trans-
fers through the IO bus. Since IO-bus transfers con-
stitute a significant fraction of the overhead in modern
cluster interconnects, and because collectives involv-
ing many processes entail many messages, NIC-based
collectives scale substantially better than host-based
versions as the size of the cluster increases. To date,
most NIC-based research has focused on this advan-
tage [6, 9, 10, 11, 14, 16, 18, 28, 30].

Another advantage of NIC-based collective opera-
tions, which has thus far been overlooked, is that they
perform more consistently than host-based implemen-
tations. The host CPU is typically required to mul-
titask processes other than the application’s, such as
operating system daemons and resource management
threads. Unfortunately, to service another process, the
operating system may deschedule application processes
at critical times. Descheduling a process involved in a
collective delays the completion of the operation. This
interference is stochastic, and the chances for such de-
lays worsen with increases in both the frequency of

collectives and the number of processes involved. This
effect is particularly dramatic in large-scale clusters
and has been shown to cause a slowdown of 50% or
more in tightly-synchronized applications [22]. The
NIC, on the other hand, is essentially dedicated to the
application and so avoids most of the interference asso-
ciated with multitasking. Thus NIC-based collectives
are able to execute with more consistent times than
host-based collectives.

3.2 Challenges of NIC-based Reduc-
tion

Even though the NIC carries out the actual collective
in NIC-based implementations, the host must commu-
nicate to the NIC, among other information, what op-
eration is to be done, which data are to be processed,
and when the operation is to start. Also, the NIC must
notify the host of the operation’s completion and de-
liver any final results. Such host-NIC synchronization
overhead diminishes the gains provided by implement-
ing NIC-based collectives. However, this overhead is
relatively small and is not of major concern.

A more important issue to consider is that of the
NIC processor’s capability. The user-programmable
processor on the NIC is considerably slower than the
host processor (more than 25 times slower on ALC).
This difference limits the complexity of the collectives
and algorithms that may benefit from NIC-based im-
plementations. To complicate matters further, the
NIC processor typically lacks functionality present in
the host processor. For example, there is no hardware-
based floating-point support on the Quadrics Elan3.
The limitations of the NIC processor proved to be the
most challenging issue encountered in our work.

3.3 Targeted Design Goals

Given the NIC processor limitations, much of the re-
search in NIC-based work so far has concentrated on
collectives which involve little processing. Collectives
such as barriers, broadcasts, and multicasts simply re-
quire intermediate nodes to pass on the received mes-
sage as is, possibly with minor data restructuring. Be-
cause so little processing is required, these algorithms
incur little penalty from running on slower processors,
and the overall results have been quite successful. This
success inspired us to investigate more complicated
cases, namely reductions.

Our design goal was to support NIC-based imple-
mentations of the standard MPI reduce and allreduce
collectives for 32- and 64-bit integer and floating-point
data types, each having minimum, maximum, and

3

summation operations. We seek to improve the reduc-
tion latency, by which we mean the time from when
the first process enters the operation to when the final
result is delivered to its final destination.

3.4 Targeted Development Environ-
ment

We implemented NIC-based reduction on the Quadrics
QsNet network, a modern cluster interconnect tech-
nology [20]. QsNet is based on two building blocks:
a programmable network interface card called the
Elan3 [23, 24] and a low-latency high-bandwidth com-
munication switch called the Elite [25].

The Elan3 resides on the PCI bus and provides an
interface between the network and a processing node
that contains one or more CPUs. The Elan3 provides a
user-programmable, multi-threaded, 32-bit, 100 MHz
RISC-based processor; 64MB of local SDRAM, an
MMU, and other sophisticated processing features.
The purpose of all this hardware is to enable the imple-
mentation of higher-level message processing protocols
without requiring explicit intervention from the host
CPU.

The Elan3 divides messages into a sequence of fixed-
length transactions for efficient transfer through the
network. The primary communication primitive sup-
ported by the network is the Remote DMA (RDMA).
RDMAs allow for one-sided data transfer between re-
mote processes, i.e., the remote process need not ex-
plicitly participate in the exchange. Transfer opera-
tions include Put, which transfers data to a remote
address space, and Get, which acquires data from a
remote address space. Both operations can access ei-
ther host- or NIC-level memory.

The underlying network is circuit-switched and uses
source-based wormhole routing. It consists of Elite
switches connected in a fat-tree topology [19]. An
Elite provides eight bidirectional links, each with a raw
bandwidth of 400 MB/s (325 MB/s at the MPI level)
and a full crossbar switch with a low 35ns cut-through
latency.

The Elite switch also provides hardware support
for collective communication, including barriers and
broadcasts, which is remarkably fast and scalable [21].
In fact, the cost to broadcast a message to all nodes
is comparable to the cost of sending it to just one.
This broadcast hardware support makes the implemen-
tation of the allreduce algorithms trivial—an efficient
reduce, followed by a broadcast from the root, provides
an efficient allreduce. For this reason we will focus our
attention on just the reduce phase in the rest of the
paper.

4 Design Issues and Solutions

While host-NIC synchronization overhead poses some
concern, the primary challenges faced when developing
NIC-based reduction are the limitations of the NIC
processor. In this section, we describe the issues we
encountered along with the solutions we developed to
overcome them.

4.1 Host-NIC Synchronization Over-
head

The host must perform several tasks to delegate a re-
duction operation to the NIC. This includes writing the
application data to and reading the final result from
NIC memory; informing the NIC processor of what
operation to perform, what data type to use, and the
number of vector elements to process; and providing
the NIC with lists of communication partners and in-
termediate data buffers. The host must also instruct
the NIC when to start the operation, and the NIC must
notify the host of the operation’s completion. Such
host-NIC synchronization introduces overhead, but its
cost can be minimized and/or hidden.

By eliminating redundant information, we mini-
mized host-NIC synchronization overhead by reducing
the amount of physical data written to the NIC. Where
possible, we referred to collections of data items using
a single index parameter. For example, we grouped in-
termediate data buffers into channels, which enabled
the host processor to refer to a set of buffers through a
single channel number. A similar technique was used
with the data structures that list the communication
partners. Typically, applications repeatedly iterate
over a limited set of communication patterns. Thus
we used some portion of NIC memory as a cache so
the host processor could refer to communication data
structures previously copied to the NIC with a simple
cache-line number.

Additionally, many data items assume limited
ranges, so only a few bits are needed to encode their
value. For example, 8 or 16 different channels and
16 or 32 cache slots will often be more than enough.
We packed the channel and cache-line numbers along
with the type of collective, e.g. reduce or allreduce, the
reduction operation, e.g. 32-bit integer addition or 64-
bit floating-point maximum, and the vector size into a
single 32-bit value using bit masks.

We also worked to hide the host-NIC synchroniza-
tion overhead. The benefits of NIC-based reduction
are gained when a node must receive, process, and then
send a message. In the case of a reduction tree, this
corresponds to just the intermediate nodes. At the

4

leaves, which only send data, and the root, which only
receives and processes data, NIC-based reduction pro-
vides no benefit, and the associated host-NIC synchro-
nization only gets in the way. By using NIC-based re-
duction only during intermediate steps, host-NIC syn-
chronization costs can be largely removed from the
critical path. We found that this technique can cut
host-NIC synchronization overhead by more than half.

4.2 NIC Processor Functionality

The first major obstacle to satisfying our design goals
was the lack of hardware support for floating-point op-
erations on the Quadrics Elan3 processor. The NIC
processor offers only integer instructions so floating-
point operations must be emulated in software. Effi-
cient emulation of floating-point operations meeting all
of the various representations, rounding methods, and
exceptions standardized in the IEEE 754 floating-point
specification is not trivial. To solve this problem, we
ported the SoftFloat [15] library to the Elan3. Soft-
Float implements IEEE-754-compliant floating-point
operations via integer and bit-wise logic instructions.
It is designed to be efficient, and it is open source and
freely available.

4.3 NIC Processor Speed

The biggest obstacle faced in designing NIC-based re-
ductions is the speed of the NIC processor. Direct
comparison of the clock rate of the Elan3 processor, at
one-hundred megahertz, to that of a typical host pro-
cessor in the multi-gigahertz range shows an order of
magnitude difference in processor speeds. The gap is
wider when executing floating-point operations, which
must be emulated in software.

To gain intuition on the communication and compu-
tation characteristics of the Elan3 and host processors,
we first implemented a simplistic reduce algorithm re-
ferred to as serial reduction. In this algorithm the root
of the reduction is solely responsible for receiving and
reducing all of the data. In a group of P nodes, the
(P − 1) non-root nodes simultaneously send their data
to a corresponding RDMA buffer at the root. The
root waits until it has received all of the messages and
then reduces the data in serial order. The reduction
is completed when the root signals the group with a
hardware-based broadcast.

Serial reduction tests involving 2-13 nodes for vari-
ous reduction operations and data sizes produced Fig-
ure 1. Figure 1(a) shows the host-based serial reduc-
tion latencies, while Figure 1(b) shows the NIC-based
times. Each figure provides the latencies of 32-bit inte-
ger addition and 64-bit floating-point addition for one-

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9 10 11 12 13
Nodes

M
ic

ro
se

co
nd

s

Float64 2 Adds
Float64 1 Add
Int32 2 Adds
Int32 1 Add
NOP

(a) Host-based

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9 10 11 12 13
Nodes

M
ic

ro
se

co
nd

s

Float64 2 Adds
Float64 1 Add
Int32 2 Adds
Int32 1 Add
NOP

(b) NIC-based

Figure 1: Serial reduction latencies

and two-element vectors. Also shown is a NOP opera-
tion which performs no computation. Since the latency
for a NOP serial reduction consists only of communi-
cation costs, it represents a lower bound for the reduce
algorithm with respect to computation.

In comparing these two figures, it is immediately ob-
vious that NIC-based reductions depend significantly
on the reduction operation as well as the reduction
vector size, while host-based reductions are largely in-
dependent of both. In the NIC-based graph, simple
operations scale considerably better than more compli-
cated ones: compare integer addition to floating-point

5

addition. Also, even fast operations are sensitive to
small changes in data size: observe integer addition
for one- and two-element vectors. Each curve in the
host-based graph, on the other hand, lies on or just
above the NOP curve, implying that computation is
insignificant compared to communication.

That the NIC processor is slower than the host pro-
cessor was already understood, but it is now clear that
this difference is substantial, since computation costs
may be comparable to communication costs. While ef-
ficient host-based reductions may be designed consid-
ering only communication, designs for NIC-based re-
duction are more complicated because they must also
account for computation.

4.4 Simple Operations and Small Data
Sizes

NIC-based reductions will perform well only for simple
operations and small data sizes. The slow NIC proces-
sor will become overwhelmed if given anything more
complicated. This is a tight constraint on the class of
reductions where NIC-based implementations may be
valuable. However, a large majority of the reductions
posed by practical programs fall within this class.

Reductions involving simple operations on small
data sizes are the prevalent case in many scientific ap-
plications. Researchers have verified this claim across
a collection of large-scale scientific programs covering
a range of application domains [29]. That collection
includes linear systems solvers, simulators for gas dy-
namics, particle and photon transport, and shock-wave
analysis. In further support of this, we profiled the
MPI allreduce operations performed during the execu-
tion of SAGE [17]. SAGE is representative of scientific
applications running on large-scale parallel clusters in
the ASC program. The results are shown in Figure 2.

Figure 2(a) shows the distribution of reduction op-
erator types. Note that only two simple data types
are used by SAGE: 32-bit integers and 64-bit floating-
point numbers. Additionally, only a few simple types
of operations are used, namely, minimum, maximum,
and summation. Typical reductions thus require lim-
ited processing functionality.

Equally informative is Figure 2(b), which shows the
cumulative distribution of the data sizes for both in-
teger and floating-point data types. The data reveal
that 95% of all reductions use three or fewer elements
and all reductions use eight or fewer.

Together, these two figures imply that typical reduc-
tions involve simple operations on small vectors. Thus,
while the NIC processor provides limited capability, it
is the common case reduction which stands to benefit
from NIC-based implementations.

0

20

40

60

80

100

120

INT 32 FLOAT 64

R
ed

uc
e

O
pe

ra
tio

ns
 (i

n
10

00
s)

MIN
MAX
SUM

(a) Operator type distribution

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8
Vector Elements

P
er

ce
nt

INT 32
FLOAT 64

(b) Vector size distribution

Figure 2: Profile of MPI Allreduce operations in SAGE

4.5 f-nomial Trees – Generalized Bino-
mial Trees

Communication structures in efficient reduction algo-
rithms tend to balance message processing time with
message latency. For simple operations and small data
sizes, message processing time in host-based reductions
is dependent only on the communication costs, while
it is affected by the communication costs, the reduc-
tion operation, and the vector size in NIC-based imple-
mentations. Thus, while a single communication struc-
ture will suffice for efficient host-based reductions, the

6

slow NIC processor demands a range of communication
structures for efficient NIC-based reductions. For this
work, we chose to implement f -nomial trees (a.k.a. k-
nomial trees), since they provide such a range of com-
munication structures by generalizing binomial trees,
a well-known reduction communication structure.

Binomial trees are commonly used in reduction algo-
rithms because they have two useful properties, 1) they
have a regular structure, so they are easy to implement;
and, 2) they keep many nodes involved throughout the
collective, so they are well parallelized. In fact, bi-
nomial trees are known to be optimal communication
structures for reduction in synchronous networks [2],
i.e., those in which the sender and receiver incur the
same cost for message transfer (latency plus process-
ing). f -nomial trees generalize binomial trees to add a
third valuable property: they provide a range of com-
munication structures, so one may selectively balance
message processing time against message latency.

While the goal is not to dwell on presentation of
a new algorithmic communication structure, f -nomial
trees are somewhat uncommon so some discussion is
called for. Here we describe f -nomial trees starting
from a quick review of the operation of binomial trees,
from which the generalization is trivial. Also, although
messages in reduction trees collapse to the root node,
it is easier to describe the structure of a tree as it
expands. For convenience of description assume the
goal is to broadcast a message from the root to all
nodes in the tree.

The operation of binomial trees can be described as
follows. Starting from the root, the broadcast mes-
sage is distributed through a series of communication
phases. During each phase, each node with a copy of
the message sends it to another node which does not
have a copy, so by the end of each phase, the number of
nodes holding a copy of the message is doubled. Thus,
in a binomial tree, the number of nodes the message
can reach grows as a power of 2 (hence the prefix “bi”)
with the number of phases.

An f -nomial tree generalizes this algorithm so that,
during each phase, each node with a copy of the mes-
sage sends to (f − 1) others who do not, as opposed to
just one. For instance, during the first phase, the root
sends the broadcast message to (f−1) children. By the
end of the first phase, the root and its (f − 1) children
all hold a copy of the message, for a total of f nodes.
In the second phase, each of these f nodes becomes a
parent to (f − 1) children who have yet to receive the
message. By the end of the second phase, the message
spreads from the f parent nodes to each of their (f−1)
children, reaching a total of f + f(f − 1) = f2 nodes.
In general, the number of nodes the message can reach
grows as a power of f with the number of phases.

0

1

1 1

2 3

1

4

5

1 1

6 7

1

8

9

1 1

10 11

1

12

13

1 1

14 15

1

2 2
2

Figure 3: 4-nomial reduction over 16 nodes

Our reduction algorithm is based on this communi-
cation structure. However, since we implement reduc-
tion rather than broadcast, messages collapse to the
root rather than expand away from it.

As a concrete description of an f -nomial reduction,
consider Figure 3, which shows a graph representing a
4-nomial tree covering a set of 16 nodes. In this exam-
ple, the goal is to reduce data distributed among the
16 nodes and place the result at the root node 0 using
a 4-nomial-tree communication structure. The arcs in
the graph connect communication partners and are la-
beled with the phase number in which the correspond-
ing communication takes place; all messages travel up-
ward from children to parents. During the first phase
of the 4-nomial algorithm, parent node 0 receives and
reduces (4 − 1) = 3 messages from nodes 1, 2, and 3;
while likewise, nodes 4, 8, and 12 simultaneously re-
ceive and reduce data from their own three children.
At the end of the first phase, the distributed data has
been partially reduced and localized to the four parent
nodes 0, 4, 8, and 12. The algorithm completes af-
ter the second phase when node 0 receives and reduces
the partial results from the three, now child, nodes 4,
8, and 12. Thus, in two communication phases, the 4-
nomial tree is able to perform a reduction over 42 = 16
nodes.

f -nomial trees offer a range of communication struc-
tures to select from through choice of the degree of the
tree f . For example, Figure 4 shows f -nomial trees of
various degrees, all which cover 16 nodes. This flexi-
bility allows one to trade off between communication
and computation costs. Each level of the tree corre-
sponds to a communication phase, while the width is
related to the amount of computation any one proces-
sor is required to do. Communication-bound reduc-
tions will favor wide trees in order to minimize the

7

Degree 2
(Binomial)

Degree 3
(Trinomial)

Degree 4

Degree 5 Degree 6 Degree 7

Degree 8

Figure 4: f -nomial trees of varying degrees (16 nodes)

number of tree levels, and thus the number of commu-
nication phases. Computation-bound reductions will
fare better with tall trees which better parallelize the
processing. The best choice for the degree of the tree
depends on the relative costs established by a partic-
ular problem. Section ?? will illustrate how to choose
the optimal degree analytically.

4.6 Vector Split Optimization

NIC processors are slow, so it is desirable to keep as
many of them working as possible in order to uti-
lize their collective processing power. Often it is
worthwhile to do a little extra communication in re-
turn for a substantial reduction in computation. In
other words, computationally intensive NIC-based re-
ductions should be highly parallelized.

For multi-element vectors, we can increase paral-
lelism through an optimization proposed by Van de
Geijn [27]. Basically, the idea is to split the reduction
vector and distribute the pieces to distinct groups of
nodes. The groups then reduce the pieces in parallel
and combine the results to form the fully-reduced vec-
tor in the last step. Presented with this optimization,
there are two options to reduce multi-element vectors:
1) reduce one large vector serially through a single tree,
or 2) reduce smaller pieces of the vector in parallel with
many trees. The second approach requires extra com-
munication to distribute and recombine the pieces of
the vector. However, if computation is expensive, sig-
nificant savings are gained by processing the pieces in
parallel.

As an example, which is diagrammed in Figure 5,
assume we would like to employ this optimization to
reduce a two-element vector across eight nodes. The

reduce

reduce

Split w/ Local Reduce Parallel Partial Reduce Combine Partial Results

Problem: reduce x 8

x 4

x 4

Figure 5: Vector split optimization

vector elements are shown as small rectangles located
adjacent to circles representing the nodes on which
they reside. As indicated by the dotted line that bi-
sects the circles horizontally in the left section of the
figure, the group of eight nodes is first split into two
groups of four. Then the top element of the vector is
distributed to the top group of four nodes and the bot-
tom element to the bottom group. To do this, nodes
pair up with a partner in the opposite group and send
it the appropriate vector element, as represented by the
arrows in the diagram. The nodes then reduce the ele-
ment received from their partner with their local copy
of the corresponding element. At this point, the top
group contains all information about the top element,
and the bottom group contains all information about
the bottom element. Once this distribution is com-
plete, the two groups simultaneously perform group-
wise reductions on the element assigned to them. This
is represented by the dotted boxes shown in the middle
section of the figure. Finally, as shown in the right sec-
tion of the figure, the two fully-reduced elements are
recombined to produce the fully reduced, two-element
vector.

This optimization was added to the basic f -nomial
algorithm to create a new algorithm we call f-nomial
split. At the beginning the vector is recursively split in
half a specified number of times, with the pieces being
distributed among the appropriate number of groups.
The f -nomial tree algorithm is then used within each
of the groups to reduce the smaller pieces in paral-
lel. The root of the f -nomial tree in each group will
receive a fully-reduced piece of the vector, which is
then sent to the primary root of the overall reduction
during the last step. The improvement due to this
optimization proved to be dramatic and is discussed

8

in Section 6.2. Essentially, it allows NIC-based reduc-
tions to scale substantially better than they otherwise
would have for larger vector sizes.

5 Analytical Models

In this section, we apply analytical models to the
design of efficient NIC-based reductions. Simple
model parameters are introduced and used to describe
quantitative differences between host-based and
NIC-based reductions. Then the model parameters
are applied to f -nomial reductions in order to find the
best degree f to use for a given reduction problem.

5.1 The Model Parameters

The sharp linear trend observed in Figure 1 permits
accurate modeling of serial reduction latencies using
just a slope and intercept. Furthermore, the serial re-
duction algorithm will serve as the basic building block
to more sophisticated tree-based algorithms. Given an
accurate model for the building blocks, one can piece
together a model for more sophisticated algorithms.
Thus, the slope and intercept of the serial reduction
latency curves are sufficient to quite accurately predict
the performance of any other proposed algorithm.

Continuing in this direction, it is instructive to de-
fine the slope and intercept in terms of more mean-
ingful parameters. To account for the linear trend, we
recall the implementation of the serial reduction al-
gorithm: all nodes simultaneously send their data to
the root, which receives all, and then reduces all mes-
sages in serial order. Since the nodes send to the root
simultaneously, all messages worm their way through
the network to the root in parallel. Hence, regardless
of the number of nodes involved, the cost of message
latency is suffered only once. On the other hand, the
root receives and reduces each message serially, which
introduces reception and reduction cost on a per node
basis. With these observations, we defined the model
parameters as listed in Table 1. Throughout the rest
of this paper, the functional parameters M (message
size) and OP (reduce operation) will typically be sup-
pressed from the various terms.

This model modifies the LogP model [13] to better
address the needs of this work. The parameter r is used
in place of o, the cost to receive a message, and the pa-
rameter g is represented as (r+c), the time required to
fully process a message. While parameter o simulta-
neously represents both send and receive overhead in
LogP, it is renamed r for clarity since it is only used to
account for receive overhead here. Also, the parameter
g is split to separate that part of g which is dependent

Parameter Meaning
C constant due to initial overhead
L message latency
r(M) reception cost of a message of size M
c(M, OP) reduction cost of a message of size

M, dependent on the operation OP
P number of nodes

Table 1: Model Parameters

LC r r r c c c

(P-1) incoming messages to root

Figure 6: Model of serial reduction latency

solely on message size, r(M), from that part which is
also dependent on the reduction operation, c(M,OP).
The message latency, the reception costs, and the re-
duction costs may all differ between host-based and
NIC-based implementations. These redefinitions allow
one to explicitly account for those differences with ded-
icated parameters. Additionally, since r and c may be
general functions of the message size, one may better
model nonlinearities, such as data packetization and
caching, which are relevant for small data sizes.

With this model it is simple to describe the linear
form of the serial reduction latency curves:

Tserial(P) ≈ C + L + (P − 1) · (r + c).

This expression is shown pictorially in Figure 6,
which depicts a time-line of the events required for the
root node of the serial reduction to receive and reduce
(P − 1) vectors.

To assign numerical values to the parameters, the
values of r and c were extracted from the serial re-
duction data for various values of M and OP . The
terms L and C were fit to the data, and P is given
for a particular problem. Note that while r is depen-
dent on the message size in general, it turns out to be
constant for the cases we are interested in—reductions
involving vector sizes of only a few elements, say up to
eight, which all fit into a single 64-byte, fixed-length
RDMA transaction on the Quadrics network. Thus,
whether the problem involves one-element vectors or
eight-element vectors, the receive time is the same—
the cost to receive one 64-byte packet.

9

To provide some context of typical model param-
eter values, communication and initialization values
are given in Table 2 and computation values are listed
in Table 3.

Parameter Value
L 2.90
r 0.42
C 2.70

(a) Host-based

Parameter Value
L 2.10
r 0.42
C 6.20

(b) NIC-based

Table 2: Comm and Init Parameter Values (µs)

Operation
Number of elements

1 2 4 8
Int32 Max 0.03 0.03 0.07 0.13
Int32 Add 0.02 0.03 0.06 0.13
Float64 Max 0.04 0.07 0.14 0.28
Float64 Add 0.02 0.06 0.12 0.16

(a) Host-based

Operation
Number of elements

1 2 4 8
Int32 Max 0.27 0.46 0.84 1.60
Int32 Add 0.25 0.44 0.76 1.44
Float64 Max 0.67 1.27 2.44 4.80
Float64 Add 1.50 2.95 5.80 11.56

(b) NIC-based

Table 3: Computation Parameter Values (µs)

These numbers demonstrate many of the design is-
sues previously mentioned. First, the message latency
L for NIC-based reductions is less than that for host-
based reductions. This highlights the savings in PCI-
bus transaction costs. Second, the overhead C is higher
for NIC-based reductions due to host-NIC synchroniza-
tion costs. Finally, the computation costs are much
higher for the NIC-based reductions.

5.2 Modeling f-nomial Trees

For a given problem we would like to be able to choose
the best f -nomial tree analytically, so now we apply
our model to the proposed algorithm. Since the root

LC r r c c

(f-1) incoming messages

L r r c c

(f-1) incoming messages

LC r r c c

(f-1) incoming messages

Phase 1 Phase 2

Figure 7: Model of f -nomial reduction latency

node of an f -nomial tree is involved in every phase of
the algorithm, the latency of the entire operation may
be predicted by focusing on the work the root node
must do. Assuming a full tree, an f -nomial tree gen-
erates logf P phases, during each of which the root
has (f − 1) children. Each phase will be of the linear,
building-block form of the serial reduction algorithm
previously discussed. In other words, the critical path
consists of a series of logf P serial reductions, each in-
volving f nodes. Thus, inserting Tserial(f) as derived
in the previous section, and adjusting for initial over-
head, one arrives at the expression

T full
fnomial(P, f) ≈ C + Tserial(f) · logf P

≈ C + [L + (f − 1) · (r + c)] · logf P

as a model of the f -nomial reduction latency.
An example application of the model to intermediate

phases is shown pictorially in Figure 7. In this figure
the two horizontal time-lines represent two intermedi-
ate parent nodes in the f -nomial tree, the bottom node
being one of the children of the top node. To start, the
initial overhead, C, is encountered in parallel across all
nodes as a one time cost. Then, after waiting for time
L, the two parent nodes each receive and reduce the
data from their (f−1) children of the first phase. Start-
ing the second phase, the bottom node, now a child to
the top node, immediately sends its partial result to its
parent. Again, after time L, the top node receives and
reduces the data from its (f−1) children of the second
phase. The reduction continues as the top node, now a
child to some higher node, sends its partial result to its
parent to begin the third phase, which is not shown.

Given the model for T full
fnomial(P, f), it is straight-

forward to compute the optimal degree f to use for a
particular problem. Basically, the goal is to find that
value of f which minimizes the expression

T full
fnomial(P, f) ≈ C + [L + (f − 1) · (r + c)] · logf P.

10

To do so, first the derivative of T full
fnomial(P, f) is taken

with respect to f :

∂

∂f
T full

fnomial(P, f)

≈ ∂

∂f
{C + Tserial(f) · logf P}

=
∂Tserial(f)

∂f
· logf P + Tserial(f) ·

∂ logf P

∂f

=
∂[L + (f − 1) · (r + c)]

∂f
· [lnP/ ln f]

+ [L + (f − 1) · (r + c)] · ∂[lnP/ ln f]
∂f

= [(r + c)] · [lnP

ln f
]

+ [L + (f − 1) · (r + c)] · [− lnP

f · ln2f
]

= (r + c) · lnP

ln f
− [L + (f − 1) · (r + c)] · lnP

f · ln2f
.

Then this expression is set equal to zero and f is iso-
lated:

(r + c) · lnP

ln f
− [L + (f − 1) · (r + c)] · lnP

f · ln2f
= 0.

(r + c) · lnP

ln f
= [L + (f − 1) · (r + c)] · lnP

f · ln2f

f · ln f · (r + c) = L + (f − 1) · (r + c)
f · ln f = L/(r + c) + (f − 1)

f · ln f − f = L/(r + c) − 1
f · (ln f − 1) = L/(r + c) − 1.

The above expression gives the best value of f to use
given L, r, and c. Since this is a transcendental ex-
pression, f must be solved for numerically by find-
ing the intersection of f · (ln f − 1) with the function
L/(r+c)−1. In our case, L and r are constants, and c
will be determined by the operation and data size of a
particular problem. After setting L = 2.10 µs and r =
0.42 µs, values corresponding to NIC-based reduction,
we plotted the intersection of these two functions for
various values of c in Figure 8,

Only integers f ≥ 2 produce valid f -nomial trees.
For intersection points which are between two integers,
one must choose the best of the two. For the values
used for L and r, note that the best degree may fall
anywhere in the range [2, 6] depending on the value
of c. The upper bound is reached somewhere between
5 and 6 when c = 0. Note when f = 6, a parent
node receives 5 messages so that the reception costs
accumulate to exactly balance the message latency, 5 ·
r = L. As computation cost increases, the best degree
decreases.

Figure 8: Plot of f · (ln f − 1) and L/(r + c) − 1

It is interesting to consider the range [1, 2]. Values of
f smaller than 2 do not produce meaningful f -nomial
trees. However, if we choose some arbitrary f in this
range, say 1.5, to substitute back in T full

fnomial(P, f), we
arrive at

T full
fnomial(P, 1.5)

≈ C + [L + ((1.5) − 1) · (r + c)] · log(1.5) P

= C + [L + 0.5 · (r + c)] · log1.5 P

When compared to binomial trees, this value of f pro-
duces trees which have more communication phases,
since log1.5 P > log2 P , in return for reduced amount
of reception and computation costs, 0.5 ·(r+c) instead
of (r + c). Thus, trees in this range do more commu-
nication to save on computation. This is the range in
which optimizations like the vector split are valuable.

5.3 Refining the Model

The expression for T full
fnomial(P, f) was derived assum-

ing a full tree, i.e., assuming logf P is an integer. The
expression for an arbitrary number of nodes is more
complex. When the number of nodes is not an integer
power f the root may not have a full set of children
during the final phase. In this case, the root still in-
curs the message latency cost L while waiting for the
data of the last phase to arrive, however, there will be
fewer than the full set of (f − 1) messages to receive
and reduce. A more detailed analysis will show that

Tfnomial(P, f) ≈ C + L · dlogf P e +
(r + c) · (f − 1) · blogf P c +

(r + c) · dP/fblogf Pc − 1e.

Here logf P represents roughly the number of phases
in the f -nomial tree. In particular dlogf P e is the total

11

0

1 2 3

4 5

6

7 8

9

10 11 12

13 14

15

Phase 1 Phase 2 Phase 3

log 3 (16) = 2.52

Total Phases = CEILING[2.52] = 3Full Phases = FLOOR[2.52] = 2

(3-1) = 2 children in each full phase CEILING[16 / 32 – 1] = 1 child in last phase

f = 3, P = 16

Figure 9: Application of reduction latency model

number of phases, while blogf P c is the number of full
phases, i.e., those in which the root has a full set of
(f − 1) children. The term involving L accounts for
the message latency cost incurred from each phase of
the tree. The last two (r + c) terms together sum the
reception and reduction costs incurred for processing
each child. Of these two terms, the first counts the
number of children processed in the full phases, while
the second counts the number of children in the final
phase, if less than a full set. An example given in
Figure 9 demonstrates how these terms apply to a 16-
node, 3-nomial tree.

With this expression for Tfnomial(P, f) it is nontriv-
ial to express the best degree f in terms of the other
model parameters. However, in practice the best de-
gree tends to be small, so a small set of values may
be evaluated numerically to find the best one. This
approach is illustrated graphically when the model is
validated in Section 6.3.

6 Experiments

Various versions of the f -nomial algorithm were im-
plemented for experimental purposes. Results from
these tests are presented in this section to validate
design choices and to illustrate the benefits of NIC-
based reduction. The algorithms were developed
and initial performance evaluations were taken on
the “crescendo” cluster at Los Alamos National
Laboratory, which consists of 32 dual-processor nodes
with 1.0 GHz Pentium IIIs and the Quadrics QsNet
network. Scalability analysis was performed on
the ALC located at Lawrence Livermore National
Laboratory. The ALC uses 960 dual-processor nodes

with 2.4GHz Xeons and the Quadrics QsNet network.

6.1 Implementation and Testing De-
tails

This section provides details about the implementation
and testing methods relevant for proper interpretation
of the results given in the following sections.

First, each node implements NIC-based reduction
using a single thread running on a single NIC, regard-
less of the number of local host processes. When mul-
tiple host processes are involved on a single node, the
host processor is used to first reduce the local data
vectors in shared memory before initiating the NIC-
based portion of the algorithm. In NIC-based reduc-
tion, one accepts the increased computational cost as-
sociated with performing reduction processing on the
slower NIC processor in return for elimination of ex-
traneous data transfers between the host and network.
However, if a collection of data is already located in
host memory, one may as well use the faster host pro-
cessor to reduce it. In addition to the obvious com-
putational savings, less data needs to be sent through
the PCI-bus.

Second, for timing purposes, a barrier was inserted
between each of the NIC-based reductions in order
to serialize consecutive invocations. Since QsNet pro-
vides a hardware-based barrier mechanism, such bar-
riers keep the distributed nodes very tightly synchro-
nized. Although such synchronization is not required
for reduction, the measurement procedure is simplified
since there is no need to worry about pipelining effects
due to nodes starting the next operation before the
previous one has completed.

Third, for host-based reduction we used the re-
duce collective from the vendor-provided, production-
level MPI library. The MPI implementation inter-
nally delegates the work to a reduction function, called
elan reduce(), provided in the lower-level Quadrics
Elan library [23]. The Elan algorithm, in turn, per-
forms a reduction via a 4-ary tree followed by a
hardware-based broadcast of the result. This trailing
broadcast simultaneously serves as a global synchro-
nization step and acts to extend the reduce into an
allreduce. Thus, the elan reduce() function implements
allreduce rather than reduce, as used in the NIC-based
reduction. Even so, the tests remain fair because the
cost of the barrier inserted between each of the NIC-
based reductions offsets the cost of the broadcast that
completes each of the host-based reductions.

Finally, when taking measurements, we found a large
variance in the reduction latency from one invocation
to another, especially for host-based reductions. Un-
less otherwise stated, the reported reduction latency

12

0

100

200

300

400

500

600

0 1 2 3 4
Recursive Splits

M
ic

ro
se

co
nd

s

16 elements
8 elements
4 elements
2 elements
1 element

Figure 10: f -nomial split on various vector sizes

as the average latency over 100,000 iterations.

6.2 Validating the Vector Split Opti-
mization

By increasing parallelism in NIC-based reductions the
vector split optimization can save significant computa-
tion costs at the expense of additional communication.
This section validates this claim.

The performance of the NIC-based f -nomial split al-
gorithm for 64-bit floating-point addition on 512 nodes
was measured for various vector sizes. The results are
shown in Figure 10, where the horizontal axis repre-
sents the number of recursive splits the vector under-
goes before its pieces are reduced through f -nomial
reduction. One split implies that the vector is bro-
ken into halves, two splits implies quarters, and so on.
Data points are not shown if the corresponding reduc-
tion vector contains fewer elements than pieces implied
by a given number of splits.

The effect of the vector split optimization for multi-
element vectors is quite pronounced. After three re-
cursive splits, the 8-element latency is improved by
nearly a factor of three, while for four recursive splits,
the 16-element case is over three times faster. The
trend suggests that the larger the vector, the greater
the benefit.

Although the vector split optimization enables NIC-
based reductions to scale better than they otherwise
would have, there is still a limit on the performance
it can achieve. Note that a latency of 140µs for a 16-
element reduction may still be much more than what
a host-based implementation could provide. And, in-

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10
Degree f

M
ic

ro
se

co
nd

s

Model

Experiment
8 Adds

4 Adds

2 Adds

1 Add

Figure 11: Predicted and measured NIC-based latencies

terestingly, one may note that the latency for a two-
element vector actually increases slightly after one
split. This of course will happen if the total savings
in computation is less than the added communication
cost of the distribution and recombination steps. How-
ever, the crossover point can be computed to always
choose the better of the two options. Van de Geijn
discusses the details in [27].

6.3 Validating the Model and f-nomial
Trees

NIC-based reduction latency is dependent on the de-
gree of the f -nomial tree used. In order to pick the best
f -nomial tree, we would like to rely on our model. This
section illustrates the accuracy of the model and the
impact of changing f for a given problem.

Figure 11, shows predicted and measured NIC-based
f -nomial reduction latencies as a function of the degree
f . The plots correspond to 64-bit floating-point addi-
tion on a 31-node system using vectors sizes of 1, 2, 4,
and 8 elements. Here, the refined f -nomial tree model
from Section 5.3 uses the NIC-based parameter values
given in Section 5.1, which were derived from serial
reduction tests on crescendo.

The figure indicates that the model predicts NIC-
based reduction latencies with high accuracy. For
instance, when choosing among NIC-based f -nomial
trees, the model correctly indicates that a degree of 4
is best for 64-bit floating-point addition of 1-element
vectors, and a degree of 2 is best for 2, 4, and 8-
element vectors. Although not shown here, the model
also accurately predicts host-based reduction perfor-

13

mance. This allows us to extrapolate algorithm scal-
ability and consider trade-offs between design choices
analytically. This is important because the problem
parameter space is large and opportunities to run tests
on large-scale clusters are rare.

Note how the degree of the f -nomial tree affects
reduction latency. Small vectors, which require less
processing time, lead to curves that are essentially
flat for the degrees tested, while larger vectors tend
to heavily favor lower-degree trees: compare the one-
element curve to the eight-element curve. Addition-
ally, although not shown, reduction operations sim-
pler than floating-point addition strongly favor higher-
degree trees. Such variation does not exist in host-
based reduction, where message processing time is ef-
fectively independent of both the vector size and the
type of computation being performed.

6.4 Latency Measurements

We timed the latencies for host-based and NIC-based
reduction over a variety of operations and data sizes,
using both one and two processes per node. We found
that NIC-based reductions are capable of completing
with lower latencies than host-based versions. To il-
lustrate this point we show the single-element vector
results obtained for host-based and NIC-based 32-bit
integer addition in Figure 12(a) and 64-bit floating-
point addition in Figure 12(b). In all measurements
we consider a 4-nomial tree, which provides the best
performance for the configurations used in the experi-
ments.

The NIC-based implementations scale considerably
better than the host-based ones. Indeed, as one may
infer from the 32-bit integer addition plot, our NIC-
based implementation was able to perform simple in-
teger reductions in about half the time it took the host
to do so. Furthermore, even with the cost of emulat-
ing floating-point addition on a much slower proces-
sor, the NIC-based implementation was able to sub-
stantially outperform the host-based reduction. When
reducing over 906 nodes, we were able to obtain laten-
cies as low as 40µs for integer operations and a slightly
higher time of 65µs for floating-point. In the largest
configuration tested—1812 processors—our NIC-based
algorithm summed single-element vectors of 32-bit in-
tegers and 64-bit floating-point numbers in 73µs and
118µs, respectively. These results represent respective
improvements of 121% and 39% over the host-based,
production-level MPI library.

We also note that system noise does have an effect
in NIC-based reductions. This is apparent when com-
paring the latencies recorded for the case of two pro-
cesses per node to those obtained for one process per

0

20

40

60

80

100

120

140

160

180

16 32 64 128 256 512 906
Nodes

M
ic

ro
se

co
nd

s

MPI_Reduce 2P/Node
MPI_Reduce 1P/Node
NIC Int32 2P/Node
NIC Int32 1P/Node
NIC Int32 Model

(a) 32-bit integer addition

0

20

40

60

80

100

120

140

160

180

16 32 64 128 256 512 906
Nodes

M
ic

ro
se

co
nd

s

MPI_Reduce 2P/Node
MPI_Reduce 1P/Node
NIC Float64 2P/Node
NIC Float64 1P/Node
NIC Float64 Model

(b) 64-bit floating-point addition

Figure 12: Host-based and NIC-based reduction latencies

node, and when comparing the performance predicted
by the model to the actual measurements. The NIC-
based implementation is subject to host-level process
interference during the time it takes the host processes
to initiate the reduction operation. Once initiated,
however, the NIC-based algorithm avoids process in-
terference throughout the execution of the reduction.
As a result, our NIC-based reduction implementation
is only marginally affected by the system noise when
compared to the host-based results.

14

0

10

20

30

40

50

60

70

80

90

100

40 50 60 70 80 90 100 110 120 130 140

Microseconds

P
er

ce
nt

ag
e

Distribution

Cumulative Distribution

Host NIC

Figure 13: Reduction latency distributions over 900 nodes

6.5 Consistency Measurements

Because NIC-based reductions avoid much of the pro-
cess interference that host-based implementations are
subject to, NIC-based reductions execute with more
consistent latencies than host-based implementations.
In our tests, the host-based latencies varied substan-
tially from one invocation to another. The best time
recorded for an individual invocation was about three
times better than the average. The NIC-based results,
on the other hand, were quite consistent

To further illustrate this point, Figure 13 shows a
distribution graph of the latencies recorded for NIC-
based and host-based 64-bit floating-point addition of
a single-element vector over 900 nodes. Unlike mea-
surements for the average reduction latency, to obtain
this distribution, 100,000 reduction invocations were
timed individually, and the resulting set was binned to
yield a histogram.

Note that the NIC-based latencies are largely con-
tained within a sharp spike, while the host-based la-
tencies are spread across a wide range of values. To
be precise, 97% of the NIC-based reductions fall with
a spread of only 4µs, while for host-based reductions,
only 57% fall within a spread of 20µs. Indeed, a sub-
stantial percentage of host-based latencies extend far
beyond the right-hand limit of the graph. After dis-
carding the highest 1% of the samples, the statistics in
Table 4 were calculated.

Reduction Average (µs) SD (µs)
host-based 89.30 65.26
NIC-based 73.67 0.29

Table 4: Reduction latency statistics over 900 nodes

Note the drastic, two order-of-magnitude difference
in the standard deviations (SD). This large difference
in consistency is indicative of the nondeterministic ef-
fect that process interference imposes on host-based
reduction implementations. Even when the lowest
recorded host-based latency is faster than the lowest
recorded NIC-based latency, the spread in host-based
latencies often pushes its average higher. In this case,
for example, the average host-based latency, at 89µs,
is substantially higher than the NIC-based average, at
74µs. By avoiding host-level process interference, we
found that NIC-based reductions are able scale signif-
icantly better than host-based versions.

7 Conclusions

Modern cluster interconnects provide programmable
processors and local memory on the network interface
card (NIC). We successfully exploited these features
in the Quadrics QsNet to implement reduction algo-
rithms on the NIC, as opposed to the host processor
where reductions are traditionally performed. The
biggest challenge we faced was the slow speed and
limited functionality of the NIC processor. Over-
coming these obstacles involved designing a family
of algorithms for a range of problem configurations,
deriving a communication and computation model to
select from among them, and implementing IEEE-
compliant floating-point operations on an integer-only
processor. We illustrated how NIC-based reductions
gain efficiency over host-based versions by eliminating
data transfers between the host and the network, as
well as by avoiding host-level process interference.
We found that NIC-based reductions outperform
host-based versions in two important ways: reduced
latency and increased consistency.

Our experimental results demonstrate low latency
and impressive scalability. In the largest configu-
ration tested—1812 processors—our NIC-based algo-
rithm summed single-element vectors of 32-bit inte-
gers and 64-bit floating-point numbers in 73µs and
118µs, respectively. These results represent respective
improvements of 121% and 39% over the host-based,
production-level MPI library. In addition, the stan-
dard deviations in timings for the NIC-based reduc-
tions were as much as two orders of magnitude smaller
than the host-based equivalents.

ACKNOWLEDGEMENTS

We would like to thank Robin Goldstone, Jim Garlick,
Moe Jette, and Ryan Braby at Lawrence Livermore

15

National Laboratory, and David Addison at Quadrics,
for providing us with the opportunity to run experi-
ments on the ASCI Linux Cluster. We would also like
to thank our anonymous reviewers for their time and
many instructive comments.

This work was partially supported by the U.S. De-
partment of Energy through Los Alamos National Lab-
oratory contract W-7405-ENG-36 and by the Spanish
MCYT under grant TIC2003-08154-C06-03.

REFERENCES

1 V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho,
C.T. Ho, S. Kipnis, and M. Snir. CCL: A Portable
and Tunable Collective Communication Library for
Scalable Parallel Computers. In Proceedings of the 8th
International Parallel Processing Symposium, pages
835–844, Cancun, Mexico, April 1994.

2 A. Bar-Noy, S. Kipnis, and B. Schieber. Opti-
mal Computation of Census Functions in the Postal
Model. Discrete Applied Mathematics, 58(3):213–222,
April 1995.

3 M. Barnett, R. Littlefield, D.G. Payne, and R.A.
van de Geijn. Global Combine on Mesh Architectures
with Wormhole Routing. In Proceedings of the 7th
International Parallel Processing Symposium, pages
156–162, Newport Beach, California, April 1993.

4 M. Barnett, L. Shuler, S. Gupta, D.G. Payne, R.A.
van de Geijn, and J. Watts. Building a High-
Performance Collective Communication Library. In
Proceedings of the Supercomputing Conference, pages
107–116, Washington D.C., November 1994.

5 M. Bernaschi and G. Iannello. Collective Communi-
cation Operations: Experimental Results vs. Theory.
Concurrency: Practice and Experience, 10(5):359–
386, April 1998.

6 R. Bhoedjang, T. Ruhl, and H. Bal. Efficient Multi-
cast on Myrinet Using Link-Level Flow Control. In
Proceedings of the International Conference on Par-
allel Processing, pages 381–390, Minneapolis, Min-
nesota, August 1998.

7 Nanette J. Boden, Danny Cohen, Robert E. Felder-
man, Alan E. Kulawick, Charles L. Seitz, Jakov N.
Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, 15(1):29–
36, January 1995.

8 J. Bruck, L. de Coster, N. Dewulf, C.T. Ho, and
R. Lauwereins. On the Design and Implementation
of Broadcast and Global Combine Operations Using
the Postal Model. IEEE Transactions on Parallel and
Distributed Systems, 7(3):256–265, March 1996.

9 D. Buntinas and D.K. Panda. Fast NIC-Based Barrier
over Myrinet/GM. In Proceedings of the International
Parallel and Distributed Processing Symposium, San
Francisco, California, April 2001.

10 D. Buntinas and D.K. Panda. NIC-Based Reduction
in Myrinet Clusters: Is It Beneficial? In Proceed-
ings of the Workshop on Novel Uses of System Area
Networks, pages 22–33, Anaheim, California, Febuary
2003.

11 D. Buntinas, D.K. Panda, J. Duato, and P. Sadayap-
pan. Broadcast/Multicast over Myrinet using NIC-
assisted Multidestination Messages. In Proceedings
of the Workshop on Communication, Architecture,
and Applications for Network-Based Parallel Comput-
ing, High Performance Computer Architecture Con-
ference, pages 115–129, Toulouse, France, January
2000.

12 M. Collette. LLNL User Briefings. In ASCI Q
LANL/HP Technical Quarterly Meeting, Santa Fe,
New Mexico, March 2003.

13 D.E. Culler, R. Karp, D. Patterson, A. Sahay, K.E.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a Realistic Model of Parallel
Computation. In Proceedings of the 4th ACM SIG-
PLAN Symposium on Principles and Practice of Par-
allel Programming, pages 1–12, San Diego, California,
May 1993.

14 M. Gerla, P. Palnati, and S. Walton. Multicasting
Protocols for High-Speed, Wormhole-Routing Local
Area Networks. In Proceedings of the ACM SIG-
COMM Symposium, pages 184–193, Stanford, Cali-
fornia, August 1996.

15 J.R. Hauser. SoftFloat.

16 C. Huang and P.K. McKinley. Efficient Collective Op-
erations with ATM Network Interface Support. In
Proceedings of the International Conference on Paral-
lel Processing, volume 1, pages 34–43, Bloomingdale,
Illinois, August 1996.

17 D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J.
Wasserman, and M. Gittings. Predictive Performance
and Scalability Modeling of a Large-Scale Applica-
tion. In Proceedings of the Supercomputing Confer-
ence, Denver, Colorado, November 2001.

18 R. Kesavan and D.K. Panda. Optimal Multicast with
Packetization and Network Interface Support. In Pro-
ceedings of the International Conference on Paral-
lel Processing, pages 370–377, Bloomingdale, Illinois,
August 1997.

19 C. E. Leiserson. Fat-trees: Universal Networks for
Hardware-Efficient Supercomputing. IEEE Transac-
tions on Computers, C-34(10):892–901, October 1985.

20 F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The Quadrics network: High-performance
clustering technology. IEEE Micro, 22(1):46–57, Jan-
uary/Febuary 2002.

21 Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg,
and Adolfy Hoisie. Hardware- and Software-Based
Collective Communication on the Quadrics Network.
In IEEE International Symposium on Network Com-
puting and Applications 2001 (NCA 2001), Boston,
MA, February 2002.

16

22 Fabrizio Petrini, Darren Kerbyson, and Scott Pakin.
The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Proces-
sors of ASCI Q. In Proceedings of SC2003, Phoenix,
Arizona, November 10–16, 2003.

23 Quadrics Supercomputers World Ltd. Elan Program-
ming Manual, 2nd edition, December 1999.

24 Quadrics Supercomputers World Ltd. Elan Reference
Manual, 1st edition, January 1999.

25 Quadrics Supercomputers World Ltd. Elite Reference
Manual, 1st edition, November 1999.

26 M. Seager. Planned Machines: ASCI Purple, ALC
and M&IC MCR. In Proceedings of the 7th Workshop
on Distributed Supercomputing, Durango, Colorado,
March 2003.

27 R.A. van de Geijn. On Global Combine Operations.
April 1991.

28 K. Verstoep, K. Langendoen, and H. Bal. Efficient
Reliable Multicast on Myrinet. In Proceedings of the
International Conference on Parallel Processing, vol-
ume 3, pages 156–165, Bloomingdale, Illinois, August
1996.

29 J. Vetter and F. Mueller. Communication character-
istics of large-scale scientific applications for contem-
porary cluster architectures. In Proceedings of the
16th International Parallel and Distributed Process-
ing Symposium, Fort Lauderdale, Florida, April 2002.

30 W. Yu, D. Buntinas, and D.K. Panda. High Per-
formance and Reliable NIC-based Multicast over
Myrinet/GM-2. In Proceedings of the International
Conference on Parallel Processing, page to be pre-
sented, Kahosiung, Taiwan, October 2003.

17

nijhuis2
Text Box
This work was performed in part under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

