LIGA microsystems aging : evaluation and mitigation.

PDF Version Also Available for Download.

Description

The deployment of LIGA structures in DP applications requires a thorough understanding of potential long term physical and chemical changes that may occur during service. While these components are generally fabricated from simple metallic systems such as copper, nickel and nickel alloys, the electroplating process used to form them creates microstructural features which differ from those found in conventional (e.g. ingot metallurgy) processing of such materials. Physical changes in non-equilibrium microstructures may occur due to long term exposure to temperatures sufficient to permit atomic and vacancy mobility. Chemical changes, particularly at the surfaces of LIGA parts, may occur in the ... continued below

Physical Description

62 p.

Creation Information

Cadden, Charles H.; Yang, Nancy Y. C. & San Marchi, Christopher W. December 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The deployment of LIGA structures in DP applications requires a thorough understanding of potential long term physical and chemical changes that may occur during service. While these components are generally fabricated from simple metallic systems such as copper, nickel and nickel alloys, the electroplating process used to form them creates microstructural features which differ from those found in conventional (e.g. ingot metallurgy) processing of such materials. Physical changes in non-equilibrium microstructures may occur due to long term exposure to temperatures sufficient to permit atomic and vacancy mobility. Chemical changes, particularly at the surfaces of LIGA parts, may occur in the presence of gaseous chemical species (e.g. water vapor, HE off-gassing compounds) and contact with other metallic structures. In this study, we have characterized the baseline microstructure of several nickel-based materials that are used to fabricate LIGA structures. Solute content and distribution was found to have a major effect on the electroplated microstructures. Microstructural features were correlated to measurements of hardness and tensile strength. Dormancy testing was conducted on one of the baseline compositions, nickel-sulfamate. Groups of specimens were exposed to controlled thermal cycles; subsequent examinations compared properties of 'aged' specimens to the baseline conditions. Results of our testing indicate that exposure to ambient temperatures (-54 C to 71 C) do not result in microstructural changes that might be expected to significantly effect mechanical performance. Additionally, no localized changes in surface appearance were found as a result of contact between electroplated parts.

Physical Description

62 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2003-8800
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/918229 | External Link
  • Office of Scientific & Technical Information Report Number: 918229
  • Archival Resource Key: ark:/67531/metadc887481

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 4:43 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cadden, Charles H.; Yang, Nancy Y. C. & San Marchi, Christopher W. LIGA microsystems aging : evaluation and mitigation., report, December 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc887481/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.