A COMPUTER-ASSIST MATERIAL TRACKING SYSTEM AS A CRITICALITY SAFETY AID TO OPERATORS

PDF Version Also Available for Download.

Description

In today's compliant-driven environment, fissionable material handlers are inundated with work control rules and procedures in carrying out nuclear operations. Historically, human errors are one of the key contributors of various criticality accidents. Since moving and handling fissionable materials are key components of their job functions, any means that can be provided to assist operators in facilitating fissionable material moves will help improve operational efficiency and enhance criticality safety implementation. From the criticality safety perspective, operational issues have been encountered in Lawrence Livermore National Laboratory (LLNL) plutonium operations. Those issues included lack of adequate historical record keeping for the fissionable ... continued below

Physical Description

6 p. (0.1 MB)

Creation Information

Claybourn, R V & Huang, S T March 30, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In today's compliant-driven environment, fissionable material handlers are inundated with work control rules and procedures in carrying out nuclear operations. Historically, human errors are one of the key contributors of various criticality accidents. Since moving and handling fissionable materials are key components of their job functions, any means that can be provided to assist operators in facilitating fissionable material moves will help improve operational efficiency and enhance criticality safety implementation. From the criticality safety perspective, operational issues have been encountered in Lawrence Livermore National Laboratory (LLNL) plutonium operations. Those issues included lack of adequate historical record keeping for the fissionable material stored in containers, a need for a better way of accommodating operations in a research and development setting, and better means of helping material handlers in carrying out various criticality safety controls. Through the years, effective means were implemented including better work control process, standardized criticality control conditions (SCCC) and relocation of criticality safety engineers to the plutonium facility. Another important measure taken was to develop a computer data acquisition system for criticality safety assessment, which is the subject of this paper. The purpose of the Criticality Special Support System (CSSS) is to integrate many of the proven operational support protocols into a software system to assist operators with assessing compliance to procedures during the handling and movement of fissionable materials. Many nuclear facilities utilize mass cards or a computer program to track fissionable material mass data in operations. Additional item specific data such as, the presence of moderators or close fitting reflectors, could be helpful to fissionable material handlers in assessing compliance to SCCC's. Computer-assist checking of a workstation material inventory against the designated SCCC to enhance the material movement was also recognized. The following three additional functions of the CSSS were requested by operational personnel: additional record keeping, assisting room inventory Material at Risk (MAR) calculations and generating the material label to be placed on a storage can. In 1998, a preliminary CSSS concept was presented to all key stakeholders for the feasibility of such an application. Subsequently, the CSSS was developed with full participation of all stakeholders including fissionable material handlers. In 2003, five CSSS workstations were deployed in the plutonium facility for beta testing and resolving any issues from the field uses. Currently, the CSSS is deployed in all laboratories in the LLNL Plutonium Facility. Initial deployment consists of only a few of the full system functions described in this paper. Final deployment of all functions will take a few more years to assure the system meets quality assurance requirements of a safety significant system.

Physical Description

6 p. (0.1 MB)

Notes

PDF-file: 6 pages; size: 0.1 Mbytes

Source

  • Presented at: The 8th International Conference on Nuclear Criticality Safety, St. Petersburg, Russia, May 28 - Jun 01, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-229561
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 909634
  • Archival Resource Key: ark:/67531/metadc887471

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 30, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 13, 2017, 6:29 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Claybourn, R V & Huang, S T. A COMPUTER-ASSIST MATERIAL TRACKING SYSTEM AS A CRITICALITY SAFETY AID TO OPERATORS, article, March 30, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc887471/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.