Viral vectors for gene modification of plants as chem/bio sensors.

PDF Version Also Available for Download.

Description

Chemical or biological sensors that are specific, sensitive, and robust allowing intelligence gathering for verification of nuclear non-proliferation treaty compliance and detouring production of weapons of mass destruction are sorely needed. Although much progress has been made in the area of biosensors, improvements in sensor lifetime, robustness, and device packaging are required before these devices become widely used. Current chemical and biological detection and identification techniques require less-than-covert sample collection followed by transport to a laboratory for analysis. In addition to being expensive and time consuming, results can often be inconclusive due to compromised sample integrity during collection and transport. ... continued below

Physical Description

18 p.

Creation Information

Manginell, Monica; Harper, Jason C.; Arango, Dulce C.; Brozik, Susan Marie & Dolan, Patricia L. November 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Chemical or biological sensors that are specific, sensitive, and robust allowing intelligence gathering for verification of nuclear non-proliferation treaty compliance and detouring production of weapons of mass destruction are sorely needed. Although much progress has been made in the area of biosensors, improvements in sensor lifetime, robustness, and device packaging are required before these devices become widely used. Current chemical and biological detection and identification techniques require less-than-covert sample collection followed by transport to a laboratory for analysis. In addition to being expensive and time consuming, results can often be inconclusive due to compromised sample integrity during collection and transport. We report here a demonstration of a plant based sensor technology which utilizes mature and seedling plants as chemical sensors. One can envision genetically modifying native plants at a site of interest that can report the presence of specific toxins or chemicals. In this one year project we used a developed inducible expression system to show the feasibility of plant sensors. The vector was designed as a safe, non-infectious vector which could be used to invade, replicate, and introduce foreign genes into mature host plants that then allow the plant to sense chem/bio agents. The genes introduced through the vector included a reporter gene that encodes for green fluorescent protein (GFP) and a gene that encodes for a mammalian receptor that recognizes a chemical agent. Specifically, GFP was induced by the presence of 17-{beta}-Estradiol (estrogen). Detection of fluorescence indicated the presence of the target chemical agent. Since the sensor is a plant, costly device packaging development or manufacturing of the sensor were not required. Additionally, the biological recognition and reporting elements are maintained in a living, natural environment and therefore do not suffer from lifetime disadvantages typical of most biosensing platforms. Detection of the chem/bio agent reporter (GFP) can be detected only at a specific wavelength.

Physical Description

18 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2006-6955
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/902219 | External Link
  • Office of Scientific & Technical Information Report Number: 902219
  • Archival Resource Key: ark:/67531/metadc887436

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 2, 2016, 6:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 10

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Manginell, Monica; Harper, Jason C.; Arango, Dulce C.; Brozik, Susan Marie & Dolan, Patricia L. Viral vectors for gene modification of plants as chem/bio sensors., report, November 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc887436/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.