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Abstract

The Hugoniot of quartz has been measured using laser-driven shock waves with pressures from

2 to 15 Mbar. Within this pressure range silica transforms from a liquid near melt into a dense

plasma. Results are in good agreement with previous studies in part of this range performed using

explosive- and nuclear-driven shocks indicating the absence of time-dependent effects for timescales

between several hundred picoseconds and several hundred microseconds. These data combined with

earlier data at lower pressures clearly show the increasing compressibility of silica as it transitions

from solid to liquid to dense plasma regimes.
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I. INTRODUCTION

Silica presents a prototypical system for studying high pressure structural changes, one

that is of fundamental importance to the study of the Earth’s interior [1]. Its phase dia-

gram, revealed by a wide array of static [2–6] and dynamic [7–10] compression experiments,

shows a transformation from tetrahedral to octahedral coordination with increasing pres-

sure, although many details remain controversial [11–13]. The availability of several silica

polymorphs at ambient pressure - in particular fused silica, quartz, cristobalite, coesite, and

stishovite - in addition to porous samples has made dynamic compression experiments espe-

cially valuable since the different ambient densities allow shock Hugoniots to traverse a wide

range of phase space [12, 14]. While extensive shock data exist for the various solid phases

of silica, only limited data [15, 16] exist for the Hugoniot of the high-pressure fluid. Shock

melting of α-quartz, detected using temperature measurements, was observed at 1.1 Mbar

[9]; above this pressure silica is expected to transform continuously from a liquid into a dense

plasma, a process that has recently been investigated in molecular dynamics simulations [17].

Precise measurement of the Hugoniot through this dissociation regime is fundamental to the

modelling of large meteor impacts [18] and provides a bound on the behavior of liquid sili-

cates that likely exist at the earth’s core-mantle boundary [19, 20]. Such studies are critical

to developing an understanding of how covalently-bonded, condensed matter systems evolve

into dense, strongly-coupled plasmas at high pressure and temperature.

In this study we perform extensive measurements of the α-quartz Hugoniot from 2 to

15 Mbar using laser-driven shock waves. A fundamental question that arises in dynamic

compression experiments is whether the states probed are at equilibrium. This issue is of

particular relevance to laser-driven shocks where ultra-high pressures are achieved in less

than a nanosecond. In comparison [21], nuclear-driven shock experiments were performed

over timescales of tens of microseconds [10], laboratory explosive and gas gun studies over

fractions of microseconds [9, 10], and magnetically-driven flyer plates over tens of nanosec-

onds [22]. Since there exist both explosive- and nuclear-driven data on α-quartz in the

range 2 to 6 Mbar, and also a single nuclear experiment at 20 Mbar [15, 16], this material

presents a valuable medium for examining the validity of the equilibrium assumption in

laser-driven equation-of-state (EOS) studies. Although shocked quartz has been shown to

exhibit non-equilibrium behavior in its solid phases [9, 23] we find that in the fluid regime of
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silica excellent agreement exists amongst these different experiments whose timescales differ

by more than 4 orders of magnitude. We believe this to be the most precise comparison of

Hugoniot measurements on different shock wave platforms achieved to date.

II. METHODS

The Hugoniot measurements in this experiment use the impedance-match technique [24]

with aluminum as the material standard. Determining the pressure and density in the

sample requires knowledge of the Hugoniot and release behavior of aluminum. This and a

similar inverse approach were used in previous experiments [15, 16] to which our data will

be compared. In other respects our experiments differ significantly from the earlier ones: in

both time and length scales, in the drive mechanism, and in the detector systems.

This experiment was performed on the OMEGA laser at the University of Rochester, a

neodymium-doped phosphate glass system that operates with frequency-tripled, 0.35 µm

light [25]. To generate the shock pressures explored in these experiments, laser energies

of 440 to 3100 J were delivered using 3.7 ns square pulse. The laser focal region had a

super-gaussian distribution with a 600 µm diameter central region of uniform intensity.

Targets consisted of a z-cut, α-quartz sample mounted on the lower step of a diamond-

turned aluminum pusher (see Fig. 1a). A plastic ablator was used to minimize hard x-ray

generation in the laser-plasma region. Three different thicknesses were used for the ablator-

pusher combination: 20 µm of CH on a 90-130 Al step (90 µm lower step and 130 µm upper

step); 20 µm of CH on a 50-85 µm Al step, and 20 µm CH plus 80 µm of CH-Br (plastic with

2 % Br by atomic weight) on a 50-85 µm Al step. The density of quartz was measured to be

2.65 g/cm3 and the refractive index along its c-axis at 532 nm was found to be 1.547. The

height of the step in the aluminum pusher was measured in each target using a white-light

interferometer.

The shock diagnostic was a line-imaging Velocity Interferometer System for Any Reflector

(VISAR) [26, 27] which measures the Doppler shift of a moving reflector. Implementation

of this system on the OMEGA laser is described in detail in reference [28]. Two VISAR’s

with different velocity sensitivities were used to resolve 2π phase shift ambiguities that

occur at shock break-out from the aluminum. The velocity sensitivities for the two VISAR

instruments, which used 7.2 mm and 3.1 mm thick fused silica etalons, was 4.465 and 10.400
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µm/ns/fringe in quartz. Post-processing of the VISAR images can determine the fringe

position to ∼ 5 % of a fringe; since the measured shock velocities are 14 - 24 µm/ns in

quartz, the multiple fringe shifts allow the precision of the shock velocity measurement to

be ∼ 1-2 %. The probe source was an injection-seeded, Q-switched, yttrium-aluminum

garnet laser, operating at a wavelength of 532 nm with a pulse length of ∼ 25 ns. Streak

cameras with temporal windows of ∼ 3 ns were used to detect the reflected probe signal.

The time resolution of the VISAR and streak camera system was 40-50 ps.

III. RESULTS

A sample VISAR trace is shown in Fig. 1b. This single time-resolved image contains

the two experimental observables used to determine an impedance-matched EOS point in

quartz: aluminum, UAl
s , and quartz, UQ

s , shock speeds. The average UAl
s is determined by

the transit time across the aluminum step; the time-resolved UQ
s is determined by the fringe

shifts once the shock wave enters the quartz, caused by a Doppler shift at the reflecting

shock front. Pressures were high enough on all shots that the shock front in quartz had

reflectivities greater than a few percent [29]. The resulting shock velocity history in quartz

is shown in Fig. 1.

Errors in UQ
s are 1-2 % and are dominated by the uncertainty in determining a fringe

shift as described above. Errors in UAl
s are ∼ 1.5 - 2.5 % and give rise to the largest

uncertainty in the shock density inferred by impedance-matching. The primary contribution

to this error comes from measuring the aluminum break-out time at each step. Typically

this uncertainty is about 15-25 ps which, for the streak camera sweep speeds used in this

experiment, corresponds to 5-8 pixels on the VISAR record [30]. For transit times ranging

from 1.2 - 2.5 ns this gives an uncertainty of 1-2 %. Other components of the transit time

uncertainty include the step height measurement (± 0.2 µm, giving ∼ 0.6 % error), and

streak camera sweep speed (± 0.5 %), with errors summed in quadrature.

Three remaining potential sources of error in UAl
s - edge rarefactions, shock non-planarity

and shock unsteadiness - are minimized using suitable correction procedures. Side rarefac-

tions, which occur at the edge of the aluminum step next to the quartz sample, can perturb

break-out from the top step if the measurement is taken too close to the edge. Such rarefac-

tion waves move laterally at velocities less than the shock speed. Thus as long as break-out
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times from the top step are taken more than one step height (35-40 µm) away from the edge

such rarefaction effects are avoided. The effects of shock non-planarity are minimized by re-

ducing the separation between the top and bottom step break-out time measurements, while

still avoiding the rarefaction region. Non-planarity in these experiments can be described

over the several hundred micron field of view by an effective shock radius of curvature of

around 4 mm which gives a 1% error in the velocity for lateral separations of 50 µm. This

is reduced further by tracking the spatial variation of break-out times over ∼ 100-150 µm

on the top and bottom steps and extrapolating them to the same point in the center of the

edge region (the Distance = 0 µm point in Fig. 1b). Using this approach we estimate typical

non-planarity errors to be < 1 %.

The importance of shock steadiness effects arises from the need to compare UAl
s and UQ

s

at similar times. More specifically, correct application of the impedance-matching condition

requires that UAl
s and UQ

s be determined at break-out from the aluminum-quartz interface

(tbo). In Figs. 1(b) and 1(c), this is the dashed line at 4.13 ns. Determining UQ
s (tbo) is

straightforward and involves a linear extrapolation of data starting 100-200 ps after tbo; this

minimizes uncertainties arising immediately after break-out where velocities are blurred both

by the time resolution of the diagnostic and the presence of a 1-3 µm glue layer between the

aluminum and quartz. Determining UAl
s (tbo) requires estimating the time history, UAl

s (t).

This can be achieved using the measured UQ
s (t) given that the same pressure source drives

both materials in parallel. Since aluminum and quartz have such similar impedances, to a

good approximation UAl
s (t)−〈UAl

s 〉 = UQ
s (t)−〈UQ

s 〉 provided the average for both materials

is taken over the same time period (the step transit time in this case) [31]. Although the

absolute quartz velocity has a 1-2 % error, the uncertainty in UQ
s -〈UQ

s 〉 is smaller, usually

less than 1 % of the velocity if the shock velocity varies smoothly. This error is summed in

quadrature with the other errors in both UQ
s and UAl

s .

The aluminum and quartz shock velocities are plotted in Fig. 2 and tabulated in Table

I. The best linear fit to the data, expressed in a form where errors in the coefficients are

independent, is given by UAl
s = B0 + B1(U

Q
s -UQ

s ) where UQ
s = 20.57, B0 = 21.14± 0.12 and

B1 = 0.91± 0.03.

Having extracted UAl
s and UQ

s at the interface, impedance matching can now be applied

to determine the quartz pressure, density, and particle speed. This requires knowledge of

the aluminum Hugoniot and its release isentropes. There are two approaches to determining
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these. The first method uses a model EOS for aluminum, usually in the form of a table. This

assures thermodynamic consistency in the calculations but makes it difficult to rigorously

account for errors in the EOS model, a factor that becomes crucial at multi-Mbar pressures.

The second method, which we use here, relies on the approximation that release curves are

simply a reflection of the Hugoniot about the initial shock state in the pressure-particle

velocity (P -Up) plane [10]. Since the Hugoniot of aluminum (and many other materials)

can be described by a linear fit in Us-Up the great advantage of this approach is that the fit

uncertainties give a direct way to estimate systematic errors in the aluminum EOS [33]. A

possible drawback to this technique is that it does not automatically assure thermodynamic

consistency between the different Hugoniot and isentrope combinations. This is unlikely to

be a problem for such small variations in the Hugoniot and isentrope. The impedance match

results, using a fit to absolute aluminum data given by Us = 6.591+1.157Up [34], are shown

in Table I with both the random and systematic errors given in parentheses. Random errors

are a direct result of the listed velocity measurement errors; systematic errors are the result

of errors in the aluminum EOS. Note how the systematic uncertainties are always smaller

than the random uncertainties but rise to a third of the total error at the highest pressure

near ∼ 15 Mbar.

IV. DISCUSSION

These data, along with results from earlier studies, are plotted in the Us-Up plane in

Fig. 3, with the best linear fit, given by Us=4.08+1.30Up, and its associated uncertainties

shown as three dashed lines [35]. The fit is in good agreement with previous data from

Trunin [15, 16] for 13 < Us < 20 µm/ns and extrapolates to the nuclear-driven point at Us

= 33 µm/ns. The scatter in our data is consistent with the quoted errors, giving a reduced

χ2 = 1.2 (systematic errors due to the aluminum EOS, which do not contribute to data

scatter, are not included in the χ2 calculation). Errors in the data from Trunin [16] are

not provided for each shot but are quoted to be about 2 % at the highest pressures, very

similar to those for our measurements. These results show that to better than 2 % in shock

velocity, our data, achieved on timescales of less than 1 nanosecond, are in agreement with

data achieved on timescales up to tens of microseconds.

By comparing data from earlier sources that have investigated compression in the solid
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phases through to the onset of melting at 1 Mbar [9, 15, 16, 32] the trend toward softening

of the Hugoniot becomes apparent. It is seen most clearly by comparing the slopes of the

linear Us-Up fits in different pressure regimes (see Figs. 3 and 4). In the high-pressure solid

up to melt, the data follow Us=1.370+1.822Up [9]; in the liquid immediately above melt

the best fit gives Us=2.049+1.619Up [9]; merging into the dense plasma our data give a

fit of Us=4.08+1.30Up over an extensive pressure range. The slope S = dUs/dUp is thus

decreasing with pressure. The use of piecewise linear fits is only a convenient construction

and the actual Hugoniot is likely to smoothly transition to the gentler slope over a finite

pressure range between 1 and ∼4 Mbar. Different regimes along the quartz Hugoniot can

thus be roughly characterized as: (1) Solid for P <∼ 1 Mbar; (2) Liquid for 1 <∼ P <∼ 4

Mbar; and (3) Dense plasma for P >∼ 4 Mbar. The softening of the Hugoniot above 1

Mbar was described theoretically by Kerley [36] who showed that without including the

effects of dissociation the quartz Hugoniot continued to follow the less compressible path

given approximately by the liquid fit in our plot; including dissociation caused a suppression

of the temperature at a few Mbar (as a result of the dissociation energy) and a resultant

softening of the Hugoniot. A recent molecular dynamics simulation has also shown that in

the pressure range between 1 and 5 Mbar silica undergoes a loss of coordination between Si

and O atoms [17], a process characteristic of dissociation in the dense fluid.

The data are compared to models by plotting them in the P -ρ plane in Fig. 4. Although

the SESAME [37] model is in poor agreement with the best fit to our data, both the Ker-

ley [36] and qEOS [38] models are in good agreement; this might be expected since the

Kerley and qEOS models were guided by earlier results [15, 16]. It is important to note that

these models achieve similar P − ρ behavior despite having significantly different tempera-

ture behavior. The explicit inclusion of dissociation effects by Kerley [36] causes a lowering

of temperature, an effect not observed in qEOS. Note that both these models do not agree

with the data in the vicinity of the melt at 1 Mbar, a disagreement possibly caused by the

observed superheating of the solid phase [9].

It is instructive to examine how the Gruneisen parameter, Γ, changes along the quartz

Hugoniot. In stishovite, Γ has been determined by comparing the principal Hugoniots of

quartz, coesite, and stishovite [14], and is found to decrease with volume to 0.7 near the

melting point, having dropped from 1.35 at ambient pressure. At higher pressures we can

approximate Γ from the slope, S, of our data by the simple relation Γ ' 2(S − 1) [39].
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This is rigorously true in the limit of maximum compression (when neighboring states on

the Hugoniot are isochoric) but was found to be approximately valid even at considerably

lower pressures such as those down to several Mbar [39]. Since S = 1.30 between 2 and

15 Mbar it appears that, within the validity of this approximation, Γ ' 0.6 over this wide

range. It is noteworthy that experiments comparing the Hugoniot for quartz with that for

porous samples estimated Γ = 0.6± 0.1 [10, 16] for fluid silica while available EOS models

give Γ ' 0.5 − 0.7 [36, 38] in this high pressure range. This indicates that Γ drops rapidly

during initial compression in the solid phase but reaches an approximately constant value

at pressures just above the melt transition with dissociation at a few Mbar causing little

effect [40]. It is not until pressures exceed 100 Mbar that inner-shell ionization begins to

cause Γ to decrease below 0.6.

V. CONCLUSIONS

An extensive study has been performed on shocked silica in the regime where it transforms

from a liquid near melt to a dense plasma. Three regimes have been identified: Solid (P <∼ 1

Mbar), dissociating liquid (1 <∼ P <∼ 4 Mbar), and dense plasma (P >∼ 4 Mbar). The

softening of the Hugoniot between 1 and 4 Mbar is likely caused by dissociation of the Si-O

system. With these laser-driven shock wave measurements on quartz an accurate comparison

can now be made between 3 different experimental platforms all attempting to achieve the

same thermodynamic states with timescales spanning over 4 orders of magnitude. In the

region between 2 and 6 Mbar, where results from all platforms exist, the data from explosive-

driven, nuclear-driven, and laser-driven experiments all produce the same results to within

experimental errors. Although extensive experiments have shown that quartz exhibits non-

equilibrium behavior at both solid-solid [23] and solid-liquid [9] phase boundaries, once the

fluid phase has been accessed the shock states achieve equilibrium in significantly less than

a nanosecond.
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VII. APPENDIX: DEVELOPMENT OF QUARTZ AS AN IMPEDANCE-MATCH

STANDARD

The impedance-matching technique for determining a material’s Hugoniot is a relative

EOS measurement whose reliability ultimately rests on the precision to which the EOS

of the standard is known. Aluminum is the most often used standard since it has the

largest number of absolute Hugoniot measurements [22, 41] over a wide range of pressures,

particularly in the regime of one to tens of Mbar currently the focus of laser-driven [42, 43],

explosively-driven [44], and magnetically-driven [45] shock techniques.

The development of the VISAR technique in laser-driven shock experiments [27, 28]

has allowed shock speed measurements with ∼ 1% precision to be achieved and enabled

continuous recording of the shock velocity with time in transparent materials. In an opaque

material such as aluminum however the VISAR cannot be used and shock speeds must

be obtained from the transit time across a known step height, an inherently less precise

measurement (see the discussion in Section III). Since the impedance matching calculation

further magnifies errors in the shock velocity of the standard, the uncertainties in UAl
s are

very often the dominant component of the final errors in ρ and Up. With the extensive

Hugoniot measurements obtained in this study it now becomes possible to replace aluminum

with quartz to take advantage of the increased measurement precision of the VISAR. This

should significantly improve the accuracy of future impedance matching measurements at

least to the extent that the release or re-shock states are well-approximated by the reflected

Hugoniot [33, 46].

For experiments with a large impedance mismatch, in which the reflected Hugoniot ap-

proximation breaks down, knowledge of the release curve (or re-shock Hugoniot) is required

in addition to the principal Hugoniot determined in this study. However, experimental data

on the release of quartz are thus far limited to first shock states below 1 Mbar [47]; in con-

trast the limit for aluminum is up to ∼ 5 Mbar [48]. Systematic errors in the off-Hugoniot

states of quartz are thus likely to be difficult to quantify, potentially off-setting the benefits
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of a more precise shock velocity measurement [49]. For such a situation we have developed

a new technique that takes advantage of the increased measurement precision in the quartz

sample while still relying on aluminum as the material standard. In this new scheme, a

quartz ‘window’, identical to the sample used in these experiments, would be mounted on

half a flat aluminum pusher as shown in Fig. 5, with the other half being covered by the

test sample. The shock speed in aluminum immediately prior to break-out can then be

determined by measuring the shock speed in quartz immediately after break-out and using

the linear relation shown in Fig. 2 and provided in the text. Such a scheme has recently

been used to study the principal Hugoniot of liquid deuterium.

For measurements of the double-shock behavior of liquid deuterium, quartz has already

been used as an anvil [50]. In this configuration only knowledge of the principal Hugoniot

is required. The precise fit for quartz was slightly different to that given in this paper since

that earlier study used a preliminary set of quartz data. These differences are negligible and

do not affect the results from that study.

In the schemes just described, the central principal is to develop a transparent standard

for performing measurements as close as possible to the impedance-matching interface. Lo-

calizing the measurement in both space and time minimizes any effects due to spatial or

temporal variations in the shock wave and eliminates the need for a transit time measure-

ment. This approach can only grow in importance as higher pressures are accessed.
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TABLE I: Summary of experimental shock wave data on quartz. UAl
s and UQ

s are the primary

experimental observables; measurement uncertainties are listed in parentheses. PQ, ρQ, and UQ
p

are inferred from impedance matching with aluminum; random and systematic errors for these

quantities are listed in parentheses first and second respectively. The random errors arise from

the listed measurement uncertainties in the primary observables. Systematic errors arise from

uncertainties in the experimentally-derived aluminum Hugoniot.

Shot UAl
s UQ

s PQ ρQ UQ
p

# (µm/ns) (µm/ns) (Mbar) (g/cc) (µm/ns)

31913 14.33(0.34) 12.62(0.32) 2.37(0.12,0.02) 6.05(0.44,0.06) 7.09(0.33,0.05)

31917 14.88(0.30) 13.50(0.26) 2.68(0.12,0.04) 5.96(0.38,0.10) 7.49(0.33,0.10)

29011 15.59(0.35) 14.59(0.32) 3.11(0.15,0.03) 5.90(0.40,0.07) 8.04(0.38,0.08)

29031 15.94(0.43) 14.90(0.41) 3.30(0.19,0.03) 6.03(0.51,0.07) 8.35(0.47,0.08)

27890 17.76(0.35) 17.56(0.26) 4.54(0.18,0.03) 5.97(0.32,0.06) 9.77(0.38,0.07)

29411 17.82(0.29) 17.52(0.24) 4.57(0.15,0.03) 6.05(0.29,0.06) 9.84(0.32,0.07)

29400 18.11(0.32) 17.96(0.26) 4.79(0.17,0.04) 6.03(0.31,0.06) 10.07(0.35,0.07)

29025 18.08(0.29) 17.52(0.25) 4.70(0.15,0.03) 6.28(0.32,0.06) 10.13(0.32,0.07)

31911 18.37(0.29) 17.13(0.23) 4.77(0.15,0.04) 6.87(0.39,0.08) 10.52(0.32,0.08)

27898 19.03(0.34) 18.25(0.24) 5.32(0.19,0.04) 6.67(0.39,0.08) 11.00(0.38,0.08)

29014 20.22(0.34) 19.46(0.27) 6.20(0.20,0.05) 6.94(0.40,0.09) 12.03(0.37,0.10)

29418 21.13(0.37) 20.34(0.26) 6.92(0.23,0.06) 7.19(0.44,0.11) 12.84(0.41,0.11)

29029 22.27(0.33) 22.02(0.26) 8.00(0.22,0.08) 7.03(0.35,0.11) 13.71(0.36,0.13)

27900 22.56(0.43) 22.76(0.26) 8.36(0.29,0.08) 6.78(0.39,0.11) 13.86(0.47,0.14)

29419 23.05(0.40) 23.12(0.24) 8.78(0.28,0.09) 6.97(0.38,0.12) 14.33(0.44,0.15)

29022 23.72(0.33) 22.74(0.27) 9.12(0.23,0.10) 7.93(0.45,0.17) 15.14(0.37,0.16)

29413 23.90(0.42) 23.03(0.24) 9.32(0.29,0.10) 7.86(0.51,0.17) 15.27(0.46,0.17)

27896 24.27(0.45) 23.84(0.23) 9.79(0.31,0.11) 7.57(0.48,0.16) 15.50(0.49,0.17)

29008 25.27(0.45) 25.61(0.25) 10.99(0.34,0.13) 7.21(0.41,0.15) 16.20(0.49,0.19)

27894 25.96(0.61) 25.54(0.23) 11.48(0.46,0.14) 7.89(0.64,0.19) 16.96(0.67,0.21)

29420 26.16(0.74) 26.01(0.25) 11.77(0.56,0.15) 7.71(0.72,0.18) 17.08(0.81,0.21)

32250 28.49(0.49) 28.26(0.26) 14.32(0.42,0.20) 8.19(0.53,0.23) 19.12(0.54,0.27)

29007 28.80(0.48) 28.92(0.26) 14.81(0.41,0.21) 7.98(0.48,0.23) 19.32(0.53,0.27)
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FIG. 1: (A) Schematic of target: Drive laser is incident from the left; VISAR views from the

right. (B) Streak camera record of the line-VISAR trace showing break-out from upper and lower

aluminum steps and the reflecting shock wave in quartz. (C) Shock velocity in quartz inferred from

the VISAR fringe shift in (B) with uncertainties given by the dotted lines.

FIG. 2: Plot of the experimental observables determined at the aluminum-quartz interface: Shock

Velocity in the aluminum standard, as determined by the transit time across the aluminum step,

versus shock velocity in quartz as measured by the VISAR. The data can be represented by a

straight line with fit parameters given in the text.

FIG. 3: Measured quartz Hugoniot shown in the shock velocity versus particle velocity plane. The

red dashed lines give the best linear fit and associated 1σ uncertainty to the data from this study

(black circles with error bars). Previous data from Trunin [15, 16] performed on explosively-driven

(Ex) and nuclear-driven (Nu) platforms are in good agreement with those from this study to within

experimental uncertainties. Selected data at lower pressures obtained on gas gun experiments (GG)

are also shown from Lyzenga [9] and Marsh [32]. Linear fits determined by Lyzenga [9] are shown

for the solid (stishovite or stishovite-like) phase (pink, dot dash line) and the liquid phase (dark

blue, double-dot dash line) immediately after melting.

FIG. 4: Measured quartz Hugoniot from Fig. 3 in the pressure-density plane illustrating the soft-

ening of the quartz Hugoniot as it proceeds through melt to the liquid and dense plasma phases.

Predictions of some EOS models are shown for comparison. As in Fig. 3, previous data from ex-

plosive (Ex), nuclear (Nu), and gas gun (GG) experiments are shown and are in good agreement

with the laser-driven data from this study.

FIG. 5: A new, high-precision scheme for determining aluminum shock velocities in an impedance-

match experiment. In this arrangement, the VISAR-measured shock velocity in the quartz window

is used to infer the shock velocity in aluminum prior to break-out, the relationship between alu-

minum and quartz shock velocities being given by the statistically-averaged fit shown in Fig. 2 and

provided in the text. This significantly reduces the error arising from transit time measurements

across a step.
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