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The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) 
formed during standard grinding processes has been investigated on fused silica glass. The 
SSD distributions of the ground surfaces were determined by: 1) creating a shallow (18-108 
μm) wedge/taper on the surface by magneto-rheological finishing; 2) exposing the SSD by HF 
acid etching; and 3) performing image analysis of the observed cracks from optical 
micrographs taken along the surface taper. The observed surface cracks are characterized as 
near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD 
depth distributions are typically described by a single exponential distribution followed by an 
asymptotic cutoff in depth (cmax). The length of the trailing indent is strongly correlated with a 
given process. Using established fracture indentation relationships, it is shown that only a 
small fraction of the abrasive particles are being mechanically loaded and causing fracture, 
and it is likely the larger particles in the abrasive particle size distribution that bear the higher 
loads.  The SSD depth was observed to increase with load and with a small amount of larger 
contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth 
distribution has been related to the SSD length distribution to gain insight into ‘effective’ size 
distribution of particles participating in the fracture. Both the average crack length and the 
surface roughness were found to scale linearly with the maximum SSD depth (cmax). These 
relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth 
and to identify the process that caused the SSD. In certain applications such as high intensity 
lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that 
absorb the high intensity laser light and lead to subsequent laser-induced surface damage. 
Hence a more scientific understanding of SSD formation can provide a means to establish 
recipes to fabricate SSD-free, laser damage resistant optical surfaces. 
 
*Work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory 
under contract No. W-7405-ENG-48 with the LDRD program. 
 
Keywords: grinding, fused silica, sub-surface damage, crack depth distribution, optical 
fabrication, lateral cracks, chatter marks, trailing indent cracks, surface cracks, high-peak-
power lasers. 
 
1. INTRODUCTION 

 
Sub-surface mechanical damage (SSD) consists of surface micro-cracks created during 

grinding and/or polishing of brittle materials surfaces, such as glass. These surface cracks, 
often identified macroscopically as scratches and digs, are often hidden below an index-
matched Bielby layer or have closed (i.e. healed); hence they are not detectable by visual 
inspection or standard optical microscopy until exposed by chemical etching [1]. In some use 
applications, the removal or minimization of SSD is required for improving the material 



strength (e.g. spacecraft, underwater windows/barriers, and other military applications) where 
the surface flaws determine the ultimate strength or for reducing/eliminating laser-induced 
damage (e.g., high-peak-power laser applications [2]). For laser optic applications, SSD is 
believed to serve as a reservoir for absorbing precursors that will heat up and explode upon 
irradiation with high fluence laser light [3].  As a result, the fabrication of SSD-free 
optics/windows has been a goal for the optical fabrication industry for many years [4-6].  

The creation of SSD can be thought of as the repeated indentation of mechanically 
loaded hard indentors (abrasives) sliding on the surface of an optic during various cutting, 
grinding and polishing processes. The initiation and growth of the three basic types of cracks 
(lateral, radial, Hertzian) resulting from a single, static indentor as a function of load, material 
properties of the indentor and substrate are known (see Fig. 1 and Discussion in Sec. 4.1) [7-
8]. These relationships have served as the basis for estimating material removal during 
grinding of brittle materials [9, 7, 10]. Others have utilized these basic fracture relationships, 
combined with experimental data, to relate the SSD depth to basic processing parameters such 
as load, abrasive size and the resulting surface roughness [11, 12, 13]. Preston was among the 
first to recognize the presence of SSD on finished surfaces and that etching exposes the 
chatter mark cracks (which we will refer to as trailing indent fractures) [14]. Since then, a 
wide variety of destructive and non-destructive techniques for measuring the amount and 
depth of the SSD have been explored [13, 15-19]. Some of the more direct SSD measurement 
techniques include the ball-dimple method [20], taper polishing method [21], and more 
recently a MRF spot method [22], where the ground or finished surface is partially removed to 
evaluate the depth of the SSD.  

In the following study, we use a taper polishing method, where various ground fused 
silica surfaces are subsequently treated by an an advanced finishing technique (magneto-
rheological finishing or MRF), known not to induce SSD, to create a shallow surface taper 
over relatively large areas to determine the statistical distribution of SSD [23, 24]. We then 
apply known indentation fracture and wear relationships [7, 8, 4] to establish insights into the 
nature of the cracking, the load per particle present, the shape of the distributions, and the 
maximum SSD depth. Such a data set combined with fracture mechanic insight serves as a 
means to understand and to predict a SSD distribution for a given grinding/polishing process 
and to serve as useful tool for performing and designing optical fabrication processes. 
 
2. EXPERIMENTAL 
 
2.1 Sample Surface Preparation 
 

Twelve round fused silica glass (Corning 7980) samples (10 cm diameter × 1.0 cm 
thick) labeled as Samples A-L were ground & polished such that they contained minimal 
subsurface damage. One face of each sample was then treated by one of several standard 
grinding processes. Sample A (Sandblasted) was sand blasted (Zero Blast-n-Peen Model 
NPGS-4) using 300 μm Al2O3 abrasive for 15 min. Sample B (120 grit Coarse Blanchard) 
was generator ground on a Blanchard Model 11A20 using a 120 grit (125 μm) diamond in 
metal matrix tool (downward feed rate = 250 μm/min, rotation rate = 45 rpm, time= 20 sec). 
Sample C (150 grit Coarse Blanchard) was generator ground on a Blanchard Model 11 using 
a 150 grit (100 μm) diamond in resin matrix tool (downward feed rate = 230 μm/min, rotation 
rate = 41 rpm, time= 20 sec). Sample D (15 μm Loose Abrasive) was ground on a Strasbaugh 
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Model 6Y2 grinder using 15 μm Al2O3 abrasive (Microgrit WCA15T) in water on a Pyrex 
glass lap (load = 25 N, lap rotation rate = 16 rpm, time= 1 hr). Sample E (15 μm Fixed 
Abrasive) was ground on a Strasbaugh (Model 6DA-DC-2) using 15-μm diamond fixed 
abrasive in an epoxy matrix (Gator Diamond) (load = 25 N, lap rotation rate = 16 rpm, time= 
1 hr). Sample F (9 μm loose Abrasive) was ground on a Strasbaugh Model 6Y2 grinder using 
9 μm Al2O3 abrasive (Microgrit WCA9T) in water on a Pyrex lap (load = 25 N, lap rotation 
rate = 36 rpm, time= 1 hr). Sample G (7 μm Fixed Abrasive) was ground on a Strasbaugh 
Model 6DA-DC-2 grinder using 7 μm diamond fixed abrasive in an epoxy matrix (Gator 
Diamond) (load = 25 N, lap rotation rate = 16 rpm, time= 1 hr). Samples H-L were prepared 
as variations or sequences of the treated samples described above, which are described in 
more detail in the results section. The surface roughness for each of the treated surfaces was 
measured by a contact stylus profilometer (KLA Tencor P-10 surface profiler). Scans were 
made on four random areas of 5 mm length on each the samples; no filtering was performed. 
The calculation of the roughness is described in Sect. 4.5. 
 
2.2  SSD damage measurement 
 

Figure 2 shows a schematic of the process used to measure the SSD distribution for a 
given surface. The details of this process are outlined elsewhere [23] and are briefly described 
here. Each treated sample was: (1) polished by a MRF (which is known to cause little or no 
surface damage) to create a precise, shallow, linear wedge (over a 6.5 cm square patch) 
having a maximum depth ranging from 18-108 μm depending on the sample; 2) etched in 20:1 
BOE (buffered oxide etch) for ~20 min to expose the cracks on the surface; 3) documented by 
bright field transmission optical microscopy (Nikon Optiphot 300) at 75x and 300x 
magnification at various distances along the surface wedge; and 4) analyzed by image 
analysis (using ImageJ software) to determine the length and depth distribution of cracks. 
Image analysis was performed by first thresholding the microscope images to create binary 
renderings such that the cracks on the surface are dark pixels and the background is white. For 
the crack depth distribution data, the total obscuration (fraction of the area that is composed of 
cracks) was calculated at various distances along the wedge (i.e. depth into the original 
sample surface). Multiple images were often utilized in the analysis at a given length along 
the wedge when the number of observed crack features was low to establish better statistics 
(i.e. to reduce the error bar). For the crack length distribution, the obscuration of each of the 
individual, isolated cracks (not cracks that intersected each other) was determined. The crack 
length distribution was then calculated by dividing the obscuration of each crack by the 
average crack width. The crack width is only a function of the etch time, and hence constant 
for a given sample. Also, the crack length distribution was found to be independent of the 
crack depth or distance along the wedge; hence the lengths of the isolated cracks were 
calculated at all depths along the wedge. Between 300 and 12000 cracks were charactered for 
each sample to obtain the crack length distributions.  

The error in the obscuration was calculated by repeatedly measuring (3-5 times) a 
single sample at different locations and determining the repeatability of the obscuration 
measurement. The variability in the data is different for different obscuration ranges, since the 
measured obscuration often spans six orders of magnitude. At high obscurations (0.1-1), the 
repeatability is ±2%; at medium obscurations (10-2-10-3), it is ±25%; and at low obscurations 
(10-4-10-6), it is ±125%. The error in the measured depth is governed by the range of depths 
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observed in a single image and the slope of the wedge, as-prepared. Most of the analysis was 
performed at 75x which had a field of view of 1.78 mm. For shallow wedges (18 μm), the 
depth range is ±0.3 μm; for medium wedges (50 mm), it is ±0.7 μm; and for deeper wedges 
(108 mm), it is ±1.6 μm. Note that no obscuration data was collected in the first two microns 
of depth, because slices that thin on the wedge were not created. 
 
2.3  Measurement of fused silica indentation parameters 
 

On a separate polished fused silica surface, a series of Vickers (sharp) indents were 
applied on fused silica at different loads ranging from 0.1 N – 20 N. Also, a series of Brinell 
indents (radius 1 mm) were applied on fused silica at different loads ranging from 15 N – 130 
N. The indents were prepared using a standard Zwick Model T3212 hardness tester. The 
sample was then etched in buffered oxide etch (BOE) (20:1) for 20 minutes. The depths of the 
radial crack from the Vickers indent were determined as half of the average of the two radial 
crack diameters visible on the surface. The depths of the lateral cracks from the Vickers 
indents were determined by the change in focus from the substrate surface to bottom plane of 
the lateral fracture. The size of the Hertzian cone fractures (ch) were calculated from the 
vertical depth of cone fractures into the surface by change in focus in the microscope, the 
contact zone diameter, and the diameter of the cone fracture at its deepest point in surface. 
The Hertzian cone depths and the Vickers lateral crack measurements were corrected by the 
glass’ refractive index of 1.46. 
 
3. RESULTS 
 
3.1 Microscopy of the surfaces 

Table 1 summarizes the experimental parameters and results for the 12 ground 
samples measured in this study. Figures 3 and 4 show a selected series of microscope images 
for each sample at various distances along the produced surface wedge (i.e., depths below the 
original ground surface) after etching. The crack features observed were typically visible by 
optical microscopy only after BOE etching. The crack number density at the ground sample 
surface was very high, such that the individual cracks intersect many other cracks. This 
rubble-like appearance (not shown in Fig.) makes it difficult to categorize the crack type. 
However, a few microns below the surface (i.e. after polishing through the surface layer), one 
can now identify distinct individual cracks all of a common morphology which decrease in 
number density with depth. For the most part, these cracks have a ‘trailing indent’ character 
(commonly referred to as chatter marks [1,7] or stick-dig fractures). Figure 5a shows a 
schematic of the geometry of an individual trailing indent crack and Fig. 5b shows a 
microscope image of a series of trailing indent cracks caused by scratching a glass surface. 
The crack depth (c) is the depth of an individual trailing indent crack into the surface; crack 
length (L) is the longer dimension of the crack as viewed on the sample surface in the 
microscope; and crack width (w) is the shorter dimension of the crack as viewed on the 
sample surface in the microscope image. Further examination of Figs. 3 and 4 reveal that 
there is a characteristic crack length associated with each sample which scales roughly with 
the size of the abrasive used to grind that surface. This characteristic crack length does not 
generally change with depth for a given sample.  
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3.2 Crack depth and length distributions 
 
 Figures 6 and 7 show the measured crack depth and length distributions for each of the 
samples. The crack depth distributions are reported in terms of cumulative crack obscuration 
(crack area fraction) as function of depth into the original treated glass surface. Obscuration 
was used instead of crack number density as the units to describe the SSD density because the 
intersection of cracks near the surface caused significant uncertainty in the number density 
count of the cracking. The shape of the depth distributions follow single exponential 
dependence for the majority of the distribution except near the end of the distribution where 
crack density drops very rapidly appearing like an asymptotic cutoff. In some cases, the 
exponential dependence spans 4-5 orders-of-magnitude (see Fig. 6a). Also, the overall depth 
of SSD generally increases with increase in the abrasive size of the grinding process (Fig. 6a). 
The crack length distributions are plotted in terms of cumulative number distribution as a 
function of crack length. For these distributions, only discrete cracks (non-intersecting cracks) 
were counted. Again, the mean crack length for each grinding process generally increases 
with increase in abrasive size (see Table 2). 
 
3.3 Indentation parameters for fused silica 
 

Table 2 shows the measured indentation crack depths for Hertzian (ch), radial (cr), and 
lateral cracks (cℓ) as a function of various indentation loads during Brinell or Vickers 
indentation. For all crack types, once initiated, the size of the crack increased with load. The 
initiation load was very different for the three different crack types.  
 
4. DISCUSSION 
 
4.1 Relationships governing SSD crack formation 

Grinding of glass can be described by brittle fractures caused by an ensemble of 
normally-loaded, hard-indentors (abrasives) sliding/rolling across the surface of the glass 
workpiece. The brittle fracture will lead to both material removal and development of SSD. 
There are three basic types of fractures that can occur by static indentation: 1) Hertzian cracks 
[7], 2) radial cracks [7,9], and 3) lateral cracks [7,9] (see Fig. 1). Hertzian cracks are cone 
cracks that are created from a spherical indenter; radial cracks are semi-circular cracks 
perpendicular to the glass surface from a sharp indenter; and lateral cracks are cracks that run 
generally parallel to the glass surface which are also typically created by a sharp indentor. By 
their geometry, it is clear that formation of lateral cracks will largely lead to material removal 
and will contribute significantly to the observed surface roughness. Hertzian and radial 
cracks, on the other hand, will largely contribute to deeper SSD and potentially to some 
material removal through the intersection with other cracks. The relationships that govern the 
initiation load (Pc) to first observed fracture on the surface have previously been described as 
[7,9]: 

rAP hc =       (1a) 

3

4

H
K

P Ic
rrc α=       (1b) 
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=lcP constant      (1c) 
where A is Auerbach’s constant (N/m), r is the local indenting radius of curvature (m) , KIc is 
the glass fracture toughness (MPa•m1/2) and H is the glass hardness (GPa). The subscripts h, r, 
ℓ are designations for Hertzian, radial and lateral cracks, respectively. The initiation load for 
the radial crack is described in terms of the index-of-brittleness previously described by Lawn 
et. al.[7]. For a constant contact radius (a) with decreasing r of the particle, the ‘sharpness’ of 
the particle increases. As r approaches zero, then the stress at the contact point approaches 
infinity.  Physically, when the stress approaches the yield stress, irreversible plastic 
deformation occurs beneath the indentor on the workpiece until it can support the load.  

The relationships that govern the depth of the fractures (c) generated after initiation 
are given by [7,9]: 
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Where χ is the growth constant (unitless), E is the elastic modulus for the glass (GPa), P is the 
applied normal load per particle (N). The crack depths for Hertzian and radial cracks scale as 
PP

)

2/3, and the crack depth for lateral cracks scales as P1/2. 
 The above description assumes a static indent (i.e. a non-moving particle on a 
frictionless interface). When considering grinding processes, sliding/rolling must be taken 
into account and friction between the particle and the glass surface becomes important. For a 
sliding sphere, which has been analyzed by Lawn et. al. [25], the movement leads to a change 
in the stress distribution such that the peak tensile stress is at the trailing edge of the particle. 
Fracture at the surface will now have the shape of an arc as opposed to a circular ring fracture 
commonly observed with frictionless Hertzian cone contact [11, 25]. These chatter, slip-dig or 
partial cone type fractures are referred to as trailing indent fractures in this study (see Fig. 5b). 
The ‘trailing indent’ initiation load (Pct), the crack depth (ct) and the crack length (Lt) for a 
spherical particle are given by [25]: 

( 21 μB
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where B is a friction constant (unitless) , μ is the friction coefficient (unitless), a is the contact 
radius for a Hertzian contact (m), d is the ‘effective’ abrasive diameter assuming a spherical 
particle (m), and k is a ratio of material constants given by: 
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where ν & νp are the Poisson’s ratio for the workpiece glass and the indentor abrasive 
particle, respectively. E and Ep are the Young’s modulus of the workpiece glass and indentor 
particle, respectively. As the friction coefficient goes to zero, the expression become identical 
to the Hertzian initiation and growth relationship described earlier (1a & 2a). The frictional 
forces significantly reduce the initiation load (Pct) for a trailing indent crack compared to 
frictionless Hertzian crack. However, the growth of a trailing indent is slightly increased with 
increase in friction compared to a frictionless Hertzian crack [25].  The crack length of trailing 
indent fracture is simply approximated as ¼ of the Hertzian contact circumference. 

Figure 8a plots the depths of the lateral cracks as a function of P1/2, and Fig. 8b plots 
the depth of the Hertzian cracks and radial cracks as a function of P2/3, respectively, as a 
function of load for the cracks that were created by standard Vickers and Hertzian indentation. 
A reasonable linear fit is obtained for all three sets of data, suggesting that the observed load 
dependence is consistent with the indentation growth expressions shown in Eqs. 2a-2c. The x-
intercept values from the linear fits were used to calculate αr & A using equations 1a-1b and 
to determine Pcℓ. The slopes of the linear fits were used to calculate χℓ, χr, and χh using Eq. 
2a-2c. These determined values are listed in Table 2 and compared with some literature 
values. 
 
4.2 Fraction of abrasive particles being mechanically loaded 
 

The indentation fracture relationships described in Section 4.1 can be used to illustrate 
that the fraction of abrasive particles being loaded and leading to fracture is quite small. Take, 
for example, Sample H (9 μm loose abrasive), and assume: 1) all the abrasive particles 
between the lap and the workpiece are evenly mechanically loaded; and 2) the fill fraction of 
particles below the work piece is ~0.3 [26]. Since the friction coefficient is not known and 
since its effect on crack depth is small (see Eq. 3b), Eq. 2a is used to estimate the depth of 
damage for a ‘trailing indent’ crack. For a 10-cm-diameter workpiece and a 9-μm-diameter 
abrasive, the total number of particles below the workpiece (NT) [the surface area of the 
workpiece times the fill fraction (f) divided by the surface area of the particles below the 
workpiece] is 108. Given a total load (PT) of 25 N, the load per particle (P=PT/NT) is then 2·10-

7 N.  Substitution of the values from Table 3 into Eq. 2a, a crack depth of only 3.5 Å is 
calculated! This prediction is ~104 smaller than the measured value of cmax (6 μm). A 
reasonable explanation for this discrepancy is that only a small fraction of the particles are 
being loaded.  

The fraction of particles being loaded for given fracture depth (fL(c)) can be described 
as: 

2

2

2/3)(
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c
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T

L
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d
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N
N

cf ⋅==
χ

    (5) 

where NL is the number of particles being loaded to get a SSD depth of c. Using Eq. 5, fload(c) 
is plotted for all the samples in which the PT (the total load) is known (i.e. all the samples 
except the sandblast and the generator grind samples) (see Fig. 9). The plots are shown for 
SSD depths ranging from 0.5 μm to cmax for each of the samples. At shallow SSD depths (say 
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1 μm) the fraction of the particles being loaded to cause that damage is calculated as 10-3 to 
10-5. At SSD depths approaching cmax, the fraction of the particles is 10-5 to 10-7. In other 
words, to cause the deepest SSD only 1 out of 100,000 to 10 million particles is being loaded 
to cause the fracture! Others have come to similar conclusions regarding the load bearing 
particles [27-28]. 
 It is likely that the larger particles in the tail end of the abrasive particle distribution 
are the load bearing particles. Figure 10 shows the abrasive size distribution of the 15 μm 
loose abrasive (Microgrit 15T) provided by the manufacturer fit to a log-normal distribution. 
By extrapolating the size distribution data with the log-normal fit and using Eq. 5, a rough 
estimate of the size of particles being loaded can be obtained (22-28 μm). Note that this 
calculation is very sensitive to the function used to fit the tail end of the distribution; the 
values obtained should be used with caution. However, this analysis does qualitatively give an 
impression of the sizes of particles being loaded, relative to the mean abrasive size. 
 
4.3 SSD depth distribution shape as a function of material removal 
 

Two major factors that determine the shape of the SSD depth distribution are: 1) the 
fundamental instantaneous distribution of cracks (fo(c)) generated at some time and 2) the 
summation of the fundamental distribution of cracks and their continued shortening with 
continued time and material removal. A simple model is utilized to evaluate relationships 
between fo(c) and the final observed SSD depth distribution (Fc(c)). 

Assume at some time (t) or amount of material removed (Δ), a distribution of cracks is 
generated (fo(c)) (see Fig 11a).  In removal increments of Δ, another set of cracks of the same 
distribution are created but starting at the new surface of depth i·Δ, where i is the number of 
increments. For this model, previously generated cracks are assumed not to grow. In addition, 
previously generated cracks are continually made shorter and eventually removed with each 
removal, resulting in a new total incremental distribution of cracks given by: 

∑ Δ+=Δ++Δ++=
i

ooooc icfcfcfcfcf )()...2()()()( .  (6) 

The cumulative distribution of crack depths is then simply:    

∫
∞

=
c cc dccfcF )()( .     (7) 

For the present discussion we will assume that fo(c) is a Gaussian distribution. The 
fundamental crack distributions for different removal increments of Δ are illustrated in Fig. 
11b. Fig. 11c shows the resulting Fc(c) & fc(c) distributions using Eqs. 6 & 7 on a semi-log 
plot for a large value of n (i.e. at steady-state where the rate of crack generation equals the 
rate of crack removal). The cumulative crack distribution Fc(c) is representative of the 
measured SSD depth distribution shown in Fig. 6a. The summing of fo(c) to get fc(c) results in 
a linear profile except at the ends of the distribution. This linear profile would result 
regardless of the functional form of fo(c). However, near the end of the distribution at low 
obscuration (i.e. the deepest cracks), the shape of the distribution Fc(c) tends to have the same 
basic shape or functional form of fc(c) and fo(c) (see Fig. 6c).  

This fundamental distribution of cracks (fo(c)) is likely governed by the particle size 
distribution of the abrasive and the load/particle (see Section 4.4). Hence, since the measured 
data follows a single exponential, fo(c) and the particles participating in fracture distribution is 
also expected to be a single exponential. This simple model implies that the deepest cracks in 
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the distribution are created in the last increments (i.e. the end of grinding process). Another 
interesting result from this simple model is that shape of the tail end of the calculated 
distribution appears as a single exponential using a Gaussian distribution for fo(c), which 
matches the shape of the observed SSD distribution shown in Figs. 6 & 7. An exponential 
dependence of the SSD distribution is also obtained using various types of fundamental 
distributions of cracks such as log-normal and Lorentzian. 
 
4.4 Relationship between the crack length distribution and crack depth distribution 
 
 Because cracks are not all the same depth, it is clear that the load for a given particle 
varies. It is sensible to assume that the larger abrasive particles bear a larger load (see Section 
4.2). Hence, the particle size distribution of the abrasive is related to the fundamental crack 
distribution (fo(c)). This relationship, however, is complicated by many factors such as: 1) 
only the tail end (largest particles) of the distribution is participating in the fracture event; 2) 
agglomeration, comminution, rotating particles, and the addition of foreign particles can 
occur; 3) the ability of loaded particles to initiate fractures can change with pre-existing 
fractures present on the surface (i.e. change in the stress profile or stress intensity at the crack 
tip); and 4) the roughness of the lap and workpiece as well as the overall interface gap can 
alter the load/particle. Without knowing the effects of each of these complicating factors, the 
measured crack length distribution can be related to measured crack depth distribution to 
determine an ‘effective’ particle size distribution (d) participating in fracture. This ‘effective’ 
size distribution can then be potentially benchmarked to the real particle size distribution as 
means to estimate damage caused by different processes. 

For this analysis or engineering model, all the observed cracks leading to SSD are 
assumed to be trailing indent  fractures with the geometry outlined in Fig. 5a, and their crack 
growth will be approximated using the Hertzian crack growth relationships (friction=0). The 
cracks near the surface (such as lateral cracks) are ignored. For simplicity, we will assume 
that the surface of the lap and the workpiece are smooth and flat, and the gap (x) is fixed and 
not time varying. The particles are all assumed to be spherical. Also, we will assume that 
loading time and rate effect are not important; in other words, the lap and workpiece are 
treated as purely elastic materials. The load/particle is assumed to be proportional to the depth 
of penetration of the particle in the lap or the workpiece. In other words for a fixed gap (x), it 
is the vertical dimension of the particle, which for spherical particles is just the ‘effective’ 
particle size (d), that is directly proportional to load (see Fig. 12).  The linear dependence of 
load with particle size has also been used in other grinding models [3, 27, 28]. The load for a 
given ‘effective’ particle size (d) is then defined as: 
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where PT is the total applied load on the part, NL is the number of particles being loaded on 
the workpiece, and dc is the mean particle size of the used abrasive. Then by substitution of 
Eqs. 2a, 3c, and 8, the ‘effective’ spherical particle size for a given crack length is determined 
as: 

2/12/3
2/3

2
32)( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

T

cL

kP
dENLLd

π
    (9) 

and the crack depth for a given crack length is determined as: 
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Ω
Lc=       (10) 

where, 
3/13/2

3
2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ω

T

c

h

Ic

PE
NdkK

χ
π .   (11) 

Eq. 10 suggests that the crack length is linearly related to crack depth for a constant Ω. Hence 
deeper cracks will have longer crack lengths. 

As a means to test the above formalism, the measured crack length distribution will be 
used to describe the crack depth distribution. First, the process of converting from cumulative 
crack length distribution (FL(L)) (Fig. 6b) to cumulative crack depth distribution in terms of 
obscuration (O(c)) (Fig. 6a) will be described generically. From FL(L) it is straight forward to 
obtain the fractional crack length distribution (fL(L)) as: 

L
(L)F 

  (L)f L
L ∂

∂
=      (12) 

which is simply a description of the fraction of cracks with lengths within a crack length range 
of L. The fractional ‘effective’ particle size distribution (f∂ d(d)) and fractional crack depth 
distribution (fc(c)) can be determined: 

d
L(L)f  (d)f Ld ∂

∂
=      (13) 

and 

c
d(d)f  (c)f dc ∂

∂
= .     (14) 

The fractional crack depth distribution (fc(c)) will have units of #/area; however the measured 
depth distribution is in terms of obscuration. The fractional crack depth distribution in terms 
of obscuration (o(c)) can be then described as: 

L(c)nw(c)f  o(c) c=      (15) 
where w is the width of the crack (μm), n is the surface crack density (cm-2), and L(c) is the 
crack length as a function of crack depth which can be obtained from simply rearranging Eqs. 
10 and 11. The measured SSD depth distribution is a cumulative distribution in units of 
obscuration or crack area fraction, which is given by:  

∫=
maxc

c
)(  O(c) dcco      (16) 

The cumulative nature of the measured depth distribution arises because the microscope 
images are taken of a given surface shows all the cracks at that depth and deeper into the 
surface. 

The process described above for converting from FL(L) to O(c), is shown in generic 
form and makes no assumption of the functional form of the FL(L). We find that FL(L) fits 
well to the data using a single exponential (see Fig. 6b) in the form of: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
〉〈

=
L
L-expA -1  (L)FL     (17) 

where A is constant and <L> is the mean crack length (see Table 1 for values). Eq. 7 is bound 
between L=Lmin and L=Lmax. Lmin is the minimum detectable crack size for the microscope 
images taken (Lmin= 2 μm for all samples except sample F for which Lmin=0.5 μm because 
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images were taken at higher magnification). Lmax was determined from the data plotted in Fig. 
6b and its values are reported in Table 1. Note, as discussed in the previous section, that the 
average crack length (<L>) is unique for each given grinding process. By assuming this 
functional form for FL(L) (Eq. 17) and performing the conversion to O(c) described above, the 
resulting form of the SSD crack depth distribution in terms of the crack length distribution 
parameters is then: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
〉〈

〉〈+

−⎟
⎠

⎞
⎜
⎝

⎛
〉〈
Ω

⎟
⎠
⎞

⎜
⎝
⎛

Ω
〉〈

+Ω=

L
-expLLnwA

L
c-expLcnwA O(c)

max
max

L
   (18) 

where the first term describes the initial depth distribution, which is roughly a single 
exponential, and the second term is a constant related to the maximum depth of the SSD 
(cmax). cmax can also be calculated directly as: 

Ω
= max

max
L

c .      (19) 

To check the consistency of the above formalism, we fit the measured SSD depth 
distribution using Eq. 18. The following values were used as known parameters: k=0.65, 
E=72.7 GPa, χh=0.034, KIc=0.75 MPa m1/2, w (see Table 1), dc (see Table 1), A (see Table 1), 
and <L> (see Table 1). Lmax is also a known measured parameter, but will be used as a fitting 
parameter and then compared to the measured results. The two remaining parameters, PT/NL 
(average load per loaded particle) and n (number density of cracks on the surface) were used 
as the fitting parameters for each sample. The best-fit values for these parameters for samples 
A-G and K-L are shown in Table 1 and plotted in Figs. 6a and b.  Except for the 9-μm loose 
abrasive (Sample F), the values for n ranged from 2.5-40 x 105 cm-2 and the values for PT/NL 
ranged from 6-1400 × 10-4 N.  Also, the average load per loaded particle generally increased 
and the number density of surface cracks generally decreased with increase in abrasive size; 
both are trends that would be expected. A similar exercise was performed for Samples H, I 
and J as described above. However, the crack length distribution fit better to a double 
exponential. The results for these samples are also summarized in Table 1.  

Using the engineering model described above, the ‘effective’ particle size distribution 
participating in fracture can be calculated. Substituting Eqs. 17, into 12 and 13, we get: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
〉〈〉〈

=
d
d-exp 

d
A  (d)Fd      (20a) 

where <d> is the mean abrasive size participating in the fracture: 
2/12/3

2/3

2
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kP
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π
    (20b) 

The calculated ‘effective’ particle size distribution is shown in Fig. 13 and the 
calculated values for <d> are listed in Table 1.  Except for the sandblast (Sample A) and the 
7-μm fixed abrasive (Sample G), <d> was found to scale linearly with the mean abrasive size 
with a ratio of ~10-11 (see Table 1).  This relationship may serve as a connection between 
process parameters and SSD. 

Remember, the ‘effective’ size distribution differs from the real abrasive size because 
of all the factors listed in the beginning of this section.  Also, the ‘effective’ size distribution 
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assumes all the particles are spherical.  In fact, most abrasives are not spherical, but more 
oblate (plate-like).  Hence, the size of the particle is related to the radius of curvature by some 
shape factor s (i.e. d = s2r).  For spherical particles s=1 and for particles more plate-like s<1. 

Figure 14 is a plot comparing Lmax (measured) and Lmax (fit) used to determine the best 
fit of Eq. 18 to measured depth distribution data.  The measured Lmax deviated from the fit 
value of Lmax where fit Lmax was noticeably higher; however there was a linear relationship 
between the two.  Our measurement of Lmax is dependent on the quantity of cracks evaluated 
and hence is not a robust value; Lmax (measured) was typically calculated from a data set of 
300-12000 cracks.  However, Lmax (fit) is related to cmax which occurs at obscuration levels of 
10-6 or one out of a million cracks.  The difference between the measured Lmax and the fit Lmax 
maybe just due to the fact that not enough cracks were characterized. 
 
 
4.5 Relationship of roughness and average crack length to the maximum SSD depth 
 

Figure 15a is a plot which shows a linear correlation between maximum SSD depth 
(cmax) and surface roughness (δ) with a proportionality constant (kmax) of 49. The values of 
kmax have been measured by others for fused silica and other glasses: Preston (~3) [14]; 
Aleinkov (~4) [13]; Lambropoulos (<2) [19, 30]; Randi (1.4) [22] and P. Hed (5-8) [21].  This 
proportionality between SSD and roughness is often used by opticians to estimate the amount 
of SSD for a given grinding process using the measured roughness. However, it is difficult to 
compare results, since the value of the measured roughness is subject to large variations 
depending on the method of measurement (e.g. profilometry vs white light interferometry), 
the spatial range measured, the length of the surface or area measured, and the calculation 
method. Most [19; 22; 21] have found that the peak-to-valley roughness (δPV) (the highest 
height minus the deepest valley) as opposed to average or rms roughness [29] provides the 
best correlation to SSD depth.  However, the (δPV) measurement is very sensitive to the length 
of the scan and the position of the surface measured.  Our measurements of δPV often range 
+40% upon repeated measurements of the same sample.  One method to calculate a roughness 
that is more repeatable and still emphasize the higher amplitude features on the surface is to 
use: 

nL
n dxxy

L

/1

0

)(1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫δ      (22) 

where y(x) is the surface topology (y is the height/amplitude and x is the distance along 
surface). For larger values of n, the value of δ emphasizes the higher amplitude features.  
When n=2, the δ is the same as the root-mean-square (rms) roughness.  Using n=4, 
emphasized the higher amplitude features as well as reduced the repeatability error to +12%; 
this measure of roughness also leads to a good correlation with SSD depth (see Fig. 15a). 

The relationship between surface roughness and SSD depth can be thought of in terms 
of the relationship between lateral crack depth and trailing indent crack depth (see Fig. 16) 
[30].  The higher amplitude features on the surface can be thought of as isolated lateral cracks. 
Assuming the surface roughness (δ) (calculated using Eq. 22) is equal to the lateral crack 
depth (cℓ), the proportionality constant (kmax) using Eq. 2c is then:  
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===    (23) 

Substituting in values for PT/NL from Table 1, we get kmax values ranging from 25-39; the 
measured value of kmax was 49. 

Figure 15b is a plot showing the correlation of the average crack depth (<c>) and the 
maximum SSD depth (cmax) with mean crack length (<L>). Both measures of SSD depth 
correlate linearly with the mean crack length, as predicted by Eq. 10 assuming Ω is fairly 
constant. The values of Ω were essentially constant (values between 3-5) for Samples A-G. 
The relationship between crack length and crack depth has some important practical 
consequences. Upon measuring the length of a crack on a work-piece, one can estimate its 
depth.  According to Fig. 15b, on average, the crack depth will be 37% of the length; however 
the crack could be as deep as 2.8 times the crack length. 
 
4.6 Effect of load, particle contamination, and crack growth 

 
Figures 7a & d show the crack depth and length distributions, respectively, of a series 

of 9 μm loose abrasive grinding processes performed at three different loads (25 N, 220 N, 
580 N). With an increase in load, the crack depth and crack length increased. Also, with an 
increase in load, a second kink in the SSD depth distribution appears which was not observed 
at the lower load. This suggests a second distribution of particles are being loaded and causing 
fracture at the higher loads.  

Figures 7b & e show the crack depth and length distributions for the 9 μm loose 
abrasive (Sample F), 15 μm loose abrasive (Sample D), and 9 μm loose abrasive 
contaminated with 0.1 wt% of the 15 μm loose abrasive (Sample J). The SSD depth increased 
significantly with the addition of this contaminant. Interestingly, a small amount of 
contaminant in Sample D led to deeper SSD than just using the 15 μm loose abrasive alone 
(Sample D). This suggests that the load/particle for fewer larger particles is high relative to 
Sample D.  

Figures 7c and f show the crack depth and length distributions for generator and 
samples: 120 grit (Sample B), 150 grit (Sample C), 120 grit followed by the 150 grit (Sample 
K), and 120 grit, etching, then followed by the 150 grit (Sample L). The intention of this 
series of samples was to determine if cracks from a previous process would grow and change 
the SSD depth distribution with respect to performing only the last step in the process. Also, if 
they do grow, does blunting the cracks by etching affect the ability of these cracks to grow? 
For Samples K and L, ~100 μm of material was removed during the 150 grit generator process 
to ensure that the removal was greater than the SSD damage caused by the 120 grit generator 
process. By examining Fig. 7c, Samples K & L did not show any significant difference in the 
SSD depth distributions compared to Sample C. This suggests, to first order, that cracks that 
preexisted in the 120 grit process did not grow any deeper than the cracks that are caused by 
the 150 grit process alone.  
 
5. CONCLUSIONS 
 

The SSD depth and length distributions for various grinding processes have been directly 
measured and statistically evaluated. The observed surface cracks are characterized as near-
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surface lateral and deeper trailing indent type (i.e., chatter marks) fractures. The length of the 
trailing indent is strongly correlated with a given process. The SSD distributions are typically 
described by a single exponential distribution followed by an asymptotic cutoff in depth 
(cmax). Using fracture indentation relationships, it is shown that only a small fraction of the 
abrasive particles are being loaded and participating in the fracture, and it is the larger 
particles in the abrasive particle size distribution that bear the higher loads. Using a 
mechanical model to describe the grinding process, the measured crack length distribution has 
been related to the crack depth distribution. This correlation, has also allowed for estimating 
the ‘effective’ particle size distribution participating in fracture, whose particle sizes are ~10 
times the mean abrasive particle size. The maximum SSD depth was found to correlate with 
both the mean crack length and the measured surface roughness. The ratio of cmax/δ was found 
to be 49. Also, the observed relationship between the mean crack length and the maximum 
SSD depth, can be utilized as a rule-of-thumb to non-destructively estimate the depth of SSD 
by measuring the crack length of an individual SSD defect. For grinding performed in 
sequence, the SSD depth distribution did not noticeably influence the SSD caused from the 
previous grinding step provided that material removal exceeded the SSD depth of the previous 
step. A small amount of contaminant of larger abrasive particles can greatly increase the SSD 
depth, even more so than just using only the contaminant, because the load/particle is higher.  
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 Definition of Terms
 

χh = Hertzian crack depth growth constant (unitless) 

χℓ = lateral crack depth growth constant (unitless) 

χr = radial crack depth growth constant (unitless) 

<c> = mean crack depth (m) 

<d> = mean particle size causing surface fracture (m) 

<L> = mean crack length (m) 

A =   Auerbach’s constant for initiation of Hertzian fracture (N/m) 

a = contact zone radius for a Hertzian indent (m) 

B =  Friction effect constant for trailing indent fracture (unitless) 

ch = Hertzian crack depth (m) 

cℓ =  lateral crack depth (m) 

cmax = maximum crack depth (m) 

cr = Radial crack depth (m) 

ct = Trailing Indent crack depth (m) 

d = abrasive particle size (m) 

dc = mean abrasive particle size (m) 

dc = mean particle size of abrasive used during polishing 

dmax = maximum particle size causing surface cracking (m) 

doptic = diameter of optic/workpiece (m) 

E = Young’s modulus of optic/workpiece (GPa) 

Ep = Young’s modulus of abrasive particle (GPa) 

f =  Fill fraction of particles between lap and workpiece 

Fc(c) = cumulative distribution of crack depths 

fc(c) = fractional distribution of crack depths 

Fd(d) = cumulative distribution of particle sizes participating in causing surface cracking 

fd(d) = fractional distribution of particle sizes participate in causing surface cracking 

FL(L) = cumulative distribution of crack lengths 

fL(L) = fractional distribution of crack lengths 

fload(c) =  fraction of particles being loaded for various crack depths (unitless) 

fo(c) = instantaneous fractional distribution of crack depths created  

i =  number of increments of material removal (unitless) 
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k = material constant for Poisson’s ratio and modulus of indentor and substrate 
(unitless) 

KIc =  fracture toughness of optic/workpiece (MPa m1/2) 

KIc = fracture toughness of fused silica 
kmax =   proportionality constant between cmax and δ 

L = crack length (m) 

Lmax = maximum crack length (m) 

Lt =  length of a trailing Indent crack (m0 

n =  number density of cracks at the surface (cm-2) 

NL = number of abrasive particles being loaded 

NT =  total number of particle between workpiece/optic and lap 

O(c) = cumulative obscuration of cracks 

o(c) = fractional obscuration of cracks 

P = normal load (N) 

Pch =  fracture initiation load for Hertzian cone crack (N) 

Pcℓ =    fracture initiation load for lateral crack (N) 

Pcr = fracture initiation load for radial crack (N) 

Pct =  fracture initiation load for trailing Indent crack (N) 

Pmax =  load/particle that leads to the maximum SSD (N) 

PT = total load on sample (N) 

r =  radius of curvature for Indent indenter (m) 
s  =    shape factor relating the radius of curvature of contact of the particle with the  

      vertical dimension of the particle 

t = time of grinding or polishing (sec) 

w = crack width (m) 

z =  coordinate describing amount of material removed during grinding/polishing (m) 

zw =  wedge depth (m) 

Δ = surface material removal increment (m) 

Ω = Proportionality constant between crack length and depth (unitless) 

αr =    fracture initiation constant for radial cracks (unitless) 

ν =  Poisson’s ratio of optic/workpiece (unitless) 

νp = Poisson’s ratio of abrasive particle (unitless) 
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  Table 1: Summary of data and model parameters for fused silica samples A-L. 
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Process Parameters              
Abrasive Size (μm) dc 300 125 100 15 15 9 7 9 9 9 100 100 

Pressure (psi) ρ nm nm nm 0.4 0.4 0.4 0.4 4.0 10.4 0.4 nm nm 
Rotation Rate (rpm) r na 45 41 16 16 16 16 16 16 16 45/ 41 45/ 41 

Measured Values              

Wedge depth (μm) zw 108 77 49 34 40 31 18 43 52 51 41 50 
SSD depth (μm) cmax 131 79 42 31 18 6 28 25 42 47 44 47 
Weighted surface 

roughness (n=4) (μm) 
δ 16.1 1.88 0.63 0.63 0.29 0.36 0.27 nm nm nm nm nm 

Peak-to-valley surface 
roughness(μm) 

δPV 38.2 8.55 3.19 3.69 0.76 1.39 1.44 nm nm nm nm nm 

Mean crack length 
(μm) 

<L> 27 28 15 4.6 4.5 2.0 8.4 7.0 / 3.3 3.8/ 18.3 3.7/ 10 19 18 
Maximum load per 

particle (N) 
Pmax 33 15.3 6 3.7 1.7 0.33 3.4 2.8 6 7.3 6.4 7.1 

Pre-exponent for F(L) A 0.83 0.94 1.01 1.31 1.65 1.23 0.83 0.84 /0.86 1.74/ 0.1 0.72/ 0.81 1.01 1.02 
Maximum crack  length 

(μm) 
Lmax 384 174 94 48 28 12 218 30 62 70 175 130 

Crack Width (μm) w 8.1 5.9 4.4 4.4 4.4 1.5 4.4 5.2 5.2 5.2 4.2 4.1 

Fitting Parameters              
Load / particle 

(Newton) 
 

 PT/NL
0.14 0.05 0.01 0.005 0.003 8·10-5 6·10-4 1.6·10-4 / 

0.14 
1·10-3 / 
0.41 

6.9·10-3 / 
0.1 1·10-2 1·10-2

Surface density of 
cracks (105 cm-2) 

 
n 2.5 5 15 10 40 3·1010 8 4.5·104/ 

0.09 
3·107/ 
0.03 

1·104/ 
0.012 15 15 

Maximum crack length 
(μm) 

Lmax nm 234 183 nm 68 68 nm 23 26 47 205 220 

Calculated Model 
Parameters 

 
            

Mean effective particle  
(μm) 

<d> 1380 1500 1000 115 140 206 536 900 / 10 147 / 76 54 / 64 1660 1550 

Ω Ω 2.9 3.0 4.4 3.2 3.8 10.7 5 8.6 / 0.9 4.7 / 0.6 2.4 / 1.0 4.8 4.8 
Mean crack depth (μm) <c> 9 9.3 3.4 1.4 1.2 0.17 1.7 na na na 4.0 3.8 

Fraction of Particles 
Loaded 

FL at 
cmax

na na na 5x10-7 1x10-6 2x10-6 1x10-7 2x10-6 3x10-6 9x10-8 na na 

na = not applicable; nm = not measured 
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  Table 2: Crack dimensions from blunt and sharp indent as a function of load 
 
 Hertzian (Blunt) Vickers (Sharp) 
 Cone Lateral Radial 
Load (N) s (μm) 2a (μm) d (μm) ch (μm) cℓ1 (μm) 2a (μm) cr (μm) 

0.10     * 2.2 2.2 
0.25     * 4.2 4.2 
0.49     * 5.7 6.3 
0.98     * 8.0 8.8 
2.0     2 11.3 13.6 
2.9     2 13.1 24.2 
4.9     5 17.1 35.3 
9.8     10 24.0 52.8 
10 * * * *    
20 170 130 10.2 22 15 30.3 70.4 
39 220 140 24.8 47    
59 420 160 52.6 140    
98 490 160 58.4 175    

120 620 170 87.6 241    
* indentation made, but no crack initiation observed 
 
Table 3: Measured Indentation parameters for Fused Silica 
 

Indentation parameters Variable Value (this 
study) 

Literature value 

Initiation constant for Hertzian 
cracks (Auerbach’s constant) A 3.0•104 N/m 9•104 N/m [2] 

Growth constant for Hertzian 
cracks 

χh 0.034 0.03 [2]  

Initiation constant for radial 
cracks αr 3.5•105 1.4•104 [2] 

Growth for radial cracks χr 0.024 0.0186 [8] 
Initiation constant for lateral 
cracks Pcℓ 1.5 N Not found 

Growth depth constant of lateral 
cracks χℓ1 0.13 Not found 
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Figure 1. Schematic illustration of the fracture geometry of the idealized fractures created by static 
indentation; (a) Hertzian cone crack from a blunt indenter, (b) radial or median cracks from a sharp 
indenter, (c) lateral crack from a sharp indenter  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Schematic illustrating the step in the wedge technique to determine the SSD depth distribution. 
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 20

Figure 3: Optical microscopy images for fused silica surfaces that have been treated by a wide variety of grinding processes (Samples 
A-G). The images for each sample are at various depths of removal using the wedge technique. The value in the bottom right is the 
depth below the original surface at which the image was taken. 
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Figure 4: Optical microscopy images for fused silica surfaces that have been treated by a range of 
grinding processes using the wedge technique (Samples H-L).  The value in the bottom right is the depth 
below the original surface at which the image was taken. 
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(a)        (b) 
 
Figure 5. (a) Proposed geometry and nomenclature for dimensions of an individual trailing indent 
fracture, (b) Optical micrograph of a trailing indent crack in a fine scratch that has been BOE etched ( the 
crack length is ~10 μm). 
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(b) 
 
Figure 6: (a) Measured cumulative crack depth distributions for fused silica surfaces that have been 
treated by a wide variety of grinding processes (Samples A-G). The plots are semi-log plots as crack 
obscuration versus crack depth. (b) Measured cumulative crack length distributions for Samples A-G. The 
points represent data points and the lines represent best fits to the data using Eq. 18.  
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Figure 7: Measured cumulative crack depth distributions for fused silica surfaces (a) as a function of load 
(b) with particle contamination (c) with grinding steps performed in series.  The plots are semi-log plots 
as crack obscuration vs crack depth. (d-f) Measured cumulative crack length distributions for the same 
samples listed in a-c. The points represent data points and the lines represent best fits to the data using Eq. 
18.  

5 30 45 60

 

 F:

 

 9 μm Loose (25 N)
 H: ) 9 μm Loose (220 N
 I: )

O
bs

cu
ra

tio
n

C

 9 μm Loose (580 N

rack Depth (μm)

-6

-5

-4

-3

-2

-1

0

0 1
10

10

10

10

10

10

10

5 30 45 60 75

 

 

 F: 9 μm Loose 
 J: 9 μm + 0.1% 15 μm
 D:  

O
bs

cu
ra

tio
n

C
0 1

0.

0.

0.

0.

1.

 15 μm Loose

rack Depth (μm)

6

7

8

9

0

5 30 45 60 75

 F: 9 μm Loose 
 J: 9 μm + 0.1% 15 μm
 D:

 

 

C
ul

m
ul

at
iv

e 
D

is
tr

ib
ut

io
n

Cra

0 15 30 45 60

0.6

0.7

0.8

0.9

1.0

 

 

 F: 9 μm Loose (25 N)
 H: 9 μm Loose (220 N)
 I: 9 μm Loose (580 N)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Crack Length (μm)

 15 μm Loose 

ck Length (μm)

0 0 0 0
-6

-5

-4

-3

-2

-1

0

0 2 4 6 8 100 12
10

10

10

10

10

10

10

0

 

 
 B: r 120 grit Generato
 C: r 150 grit Generato
 K: t 120 grit /150 gri
 L: t

O
bs

cu
ra

tio
n

C
0 2 4 6 8 1 120

0.

0.

0.

0.

1.

 120 grit/ etch / 150 gri

rack Depth (μm)
0 0 0 00

2

4

6

8

0

 

 

 B: 120 grit Generator
 C: 150 grit Generator
 K: t

0

 120 grit/ 150 gri
 L: tC

ul
m

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Cr

 120 grit/ etch/ 150 gri

ack length (μm)



0 1 2 3 4
0

2

4

6

8

10

12

14

La
te

ra
l C

ra
ck

 D
ep

th
, c

l (
μm

)

Load1/2, P1/2 (N1/2)

0 5 10 15 20 25 30
0

50

100

150

200

250
 Hertzian cone
 Radial

C
ra

ck
 d

ep
th

, c
h o

r c
r (

μm
)

Load2/3, P2/3 (N2/3)
 

(a)               (b) 
 
Figure 8: (a) Lateral crack depth as a function of load 1/2 to determine χℓ1; (b) Hertzian cone depth and 
radial crack depth as a function of load 2/3 to determine χh and χr . The lines represent the best linear fits to 
the data.  
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Figure 9: Calculated fraction of the total particles below the workpiece being loaded as a function of the 
depth of the crack assuming that only one type of crack is created at one instance. The values were 
determined using Eq. 5. 
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Figure 10. Abrasive fractional size distribution and the estimated range of particles being loaded and 
used to cause fracture. 
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Figure 11: (a) Schematic illustration of the creation and removal of cracks as a function of surface 
removal; (b) schematic illustration instantaneous distribution of crack depths (fo(c)) for different removal 
increments of Δ;(c) schematic illustration comparing fo(c), fc(c) and Fc(c) (see Eqs. 6 & 7) on a semilog 
plot. 
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Figure 12: Schematic of the working model to describe the development of SSD during grinding 
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Figure 13. Calculated ‘effective’ particle size distributions participating in the surface fractures using the 
measured crack length distributions for Samples A-G and Eq 20a & b. 
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Figure 14: Correlation between the measured maximum crack length (Lmax(measured) and the best fit 
Lmax determine by fitting the crack depth distributions to Eq. 18. (Note not all the samples had a Lmax that 
could be fit to data; hence data for those samples are not included.)  
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(b) 

Figure 15: (a) Correlation of the maximum SSD depth (cmax) with surface roughness. (b) Correlation of 
maximum SSD depth (cmax) and the average SSD depth (<c>) with the measured mean crack length 
(<L>).  
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Figure 16. Illustration between SSD depth and surface roughness. 

 
 

 
 




