Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

PDF Version Also Available for Download.

Description

This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led ... continued below

Creation Information

Akio; Ishikawa; Ojeda, Manuel; Yao, Nan & Iglesia, Enrique September 30, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. More specifically, we were focused on the roles of hydrogen-assisted and alkali-assisted dissociation of CO in determining rates and CO{sub 2} selectivities. During this sixth reporting period, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by the two CO activation pathways we propose. During this reporting period, the experimental kinetic study has been also complemented with periodic, self-consistent, DFT-GGA investigations in a parallel collaboration with the group of Manos Mavrikakis at the University of Wisconsin-Madison. These DFT calculations suggest minimal energy paths for proposed elementary steps on Fe(110) and Co(0001) surfaces. These calculations support our novel conclusions about the preferential dissociation of CO dissociation via H-assisted pathways on Fe-based catalysts. Unassisted CO dissociation also occurs and lead to the formation of CO{sub 2} as a primary oxygen scavenging mechanism after CO dissociation on Fe-based catalysts. Simulations and our experimental data show also that unassisted CO dissociation route is much less likely on Co surfaces and that hydrocarbons form exclusively via H-assisted pathways with the formation of H{sub 2}O as the sole oxygen rejection product. We have also started a study of the use of colloidal precipitation methods for the synthesis of small Fe and Co clusters using recently developed methods to explore possible further improvements in Fischer-Tropsch synthesis rates and selectivities. We have found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, are formed. The nature of the cobalt precursor and the modification of the support seem to be critical parameters in order to obtain highly dispersed and reducible Co nanoparticles.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC26-03NT41964
  • DOI: 10.2172/894902 | External Link
  • Office of Scientific & Technical Information Report Number: 894902
  • Archival Resource Key: ark:/67531/metadc887284

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 30, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 23, 2016, 2:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Akio; Ishikawa; Ojeda, Manuel; Yao, Nan & Iglesia, Enrique. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals, report, September 30, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc887284/: accessed May 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.