Beryllium Technology Research in the United States

PDF Version Also Available for Download.

Description

While most active research involving beryllium in the United States remains tied strongly to biological effects, there are several areas of technology development in the last two years that should be mentioned. (1) Beryllium disposed of in soil vaults at the Idaho National Laboratory (INL) Radioactive Waste Management Complex (RWMC) has been encapsulated in-situ by high-temperature and pressure injection of a proprietary wax based material to inhibit corrosion. (2) A research program to develop a process for removing heavy metals and cobalt from irradiated beryllium using solvent extraction techniques has been initiated to remove components that prevent the beryllium from ... continued below

Creation Information

Longhurst, Glen R.; Anderl, Robert A.; Adleer-Flitton, M. Kay; Matthern, Gretchen E.; Tranter, Troy J. & Hollis, Kendall J. February 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

While most active research involving beryllium in the United States remains tied strongly to biological effects, there are several areas of technology development in the last two years that should be mentioned. (1) Beryllium disposed of in soil vaults at the Idaho National Laboratory (INL) Radioactive Waste Management Complex (RWMC) has been encapsulated in-situ by high-temperature and pressure injection of a proprietary wax based material to inhibit corrosion. (2) A research program to develop a process for removing heavy metals and cobalt from irradiated beryllium using solvent extraction techniques has been initiated to remove components that prevent the beryllium from being disposed of as ordinary radioactive waste. (3) The JUPITER-II program at the INL Safety and Tritium Applied Research (STAR) facility has addressed the REDOX reaction of beryllium in molten Flibe (a mixture of LiF and BeF2) to control tritium, particularly in the form of HF, bred in the Flibe by reactions involving both beryllium and lithium. (4) Work has been performed at Los Alamos National Laboratory to produce beryllium high heat flux components by plasma spray deposition on macro-roughened substrates. Finally, (5) corrosion studies on buried beryllium samples at the RWMC have shown that the physical form of some of the corroded beryllium is very filamentary and asbestos-like. This form of beryllium may exacerbate the contraction of chronic beryllium disease.

Source

  • 7th IEA International Workshop on Beryllium Technology,Santa Barbara, CA,11/29/2005,12/02/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-05-00920
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911597
  • Archival Resource Key: ark:/67531/metadc887251

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 22, 2016, 9:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Longhurst, Glen R.; Anderl, Robert A.; Adleer-Flitton, M. Kay; Matthern, Gretchen E.; Tranter, Troy J. & Hollis, Kendall J. Beryllium Technology Research in the United States, article, February 1, 2005; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc887251/: accessed November 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.