Assessment of RELAP5-3D for Analysis of Very High Temperature Gas-Cooled Reactors

PDF Version Also Available for Download.

Description

The RELAP5-3D© computer code is being improved for the analysis of very high temperature gas-cooled reactors. Diffusion and natural circulation can be important phenomena in gas-cooled reactors following a loss-of-coolant accident. Recent improvements to the code include the addition of models that simulate pressure loss across a pebble bed and molecular diffusion. These models were assessed using experimental data. The diffusion model was assessed using data from inverted U-tube experiments. The code’s capability to simulate natural circulation of air through a pebble bed was assessed using data from the NACOK facility. The calculated results were in reasonable agreement with the ... continued below

Creation Information

Oh, Chang; Siefken, Larry & Davis, Cliff October 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The RELAP5-3D© computer code is being improved for the analysis of very high temperature gas-cooled reactors. Diffusion and natural circulation can be important phenomena in gas-cooled reactors following a loss-of-coolant accident. Recent improvements to the code include the addition of models that simulate pressure loss across a pebble bed and molecular diffusion. These models were assessed using experimental data. The diffusion model was assessed using data from inverted U-tube experiments. The code’s capability to simulate natural circulation of air through a pebble bed was assessed using data from the NACOK facility. The calculated results were in reasonable agreement with the measured values.

Source

  • The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11),Avignon, France,10/02/2005,10/06/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-05-00282
  • Grant Number: DE-AC07-99ID-13727
  • DOI: 10.2172/911255 | External Link
  • Office of Scientific & Technical Information Report Number: 911735
  • Archival Resource Key: ark:/67531/metadc887104

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 5:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Oh, Chang; Siefken, Larry & Davis, Cliff. Assessment of RELAP5-3D for Analysis of Very High Temperature Gas-Cooled Reactors, article, October 1, 2005; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc887104/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.