Multipole (E1, M1, E2, M2, E3, M3) transition wavelengths and rates between 3l-15l' excited and ground states in nickel-like ions

PDF Version Also Available for Download.

Description

A relativistic many-body method is developed to calculate energy and transition rates for multipole transitions in many-electron ions. This method is based on relativistic many-body perturbation theory (RMBPT), agrees with MCDF calculations in lowest-order, includes all second-order correlation corrections and includes corrections from negative energy states. Reduced matrix elements, oscillator strengths, and transition rates are calculated for electric-multipole (dipole (E1), quadrupole (E2), and octupole (E3)) and magnetic-multipole (dipole (M1), quadrupole (M2), and octupole (M3)) transitions between 3l{sup -1}5l{prime} excited and ground states in Ni-like ions with nuclear charges ranging from Z = 30 to 100. The calculations start from a ... continued below

Physical Description

PDF-file: 23 pages; size: 1.2 Mbytes

Creation Information

Safronova, U I; Safronova, A S & Beiersdorfer, P May 4, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A relativistic many-body method is developed to calculate energy and transition rates for multipole transitions in many-electron ions. This method is based on relativistic many-body perturbation theory (RMBPT), agrees with MCDF calculations in lowest-order, includes all second-order correlation corrections and includes corrections from negative energy states. Reduced matrix elements, oscillator strengths, and transition rates are calculated for electric-multipole (dipole (E1), quadrupole (E2), and octupole (E3)) and magnetic-multipole (dipole (M1), quadrupole (M2), and octupole (M3)) transitions between 3l{sup -1}5l{prime} excited and ground states in Ni-like ions with nuclear charges ranging from Z = 30 to 100. The calculations start from a 1s{sup 2}s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10} Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. A detailed discussion of the various contributions to the dipole matrix elements and energy levels is given for nickel-like tungsten (Z = 74). The contributions from negative-energy states are included in the second order E1, M1, E2, M2, E3 and M3 matrix elements. The resulting transition energies and transition rates are compared with experimental values and with results from other recent calculations. These atomic data are important in modeling of M-shell radiation spectra of heavy ions generated in electron beam ion trap experiments and in M-shell diagnostics of plasmas.

Physical Description

PDF-file: 23 pages; size: 1.2 Mbytes

Source

  • Journal Name: Journal of Physics B, vol. 39, N/A, November 30, 2005, pp. 4491-4513; Journal Volume: 39

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-221216
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 903440
  • Archival Resource Key: ark:/67531/metadc887005

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 4, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 9:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Safronova, U I; Safronova, A S & Beiersdorfer, P. Multipole (E1, M1, E2, M2, E3, M3) transition wavelengths and rates between 3l-15l' excited and ground states in nickel-like ions, article, May 4, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc887005/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.