Understanding metal vaporizaiton from laser welding.

PDF Version Also Available for Download.

Description

The production of metal vapor as a consequence of high intensity laser irradiation is a serious concern in laser welding. Despite the widespread use of lasers in manufacturing, little fundamental understanding of laser/material interaction in the weld pool exists. Laser welding experiments on 304 stainless steel have been completed which have advanced our fundamental understanding of the magnitude and the parameter dependence of metal vaporization in laser spot welding. Calculations using a three-dimensional, transient, numerical model were used to compare with the experimental results. Convection played a very important role in the heat transfer especially towards the end of the ... continued below

Physical Description

70 p.

Creation Information

DebRoy, Tarasankar (The Pennsylvania State University, University Park, PA); Fuerschbach, Phillip William; He, Xiuli (The Pennsylvania State University, University Park, PA) & Norris, Jerome T. September 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The production of metal vapor as a consequence of high intensity laser irradiation is a serious concern in laser welding. Despite the widespread use of lasers in manufacturing, little fundamental understanding of laser/material interaction in the weld pool exists. Laser welding experiments on 304 stainless steel have been completed which have advanced our fundamental understanding of the magnitude and the parameter dependence of metal vaporization in laser spot welding. Calculations using a three-dimensional, transient, numerical model were used to compare with the experimental results. Convection played a very important role in the heat transfer especially towards the end of the laser pulse. The peak temperatures and velocities increased significantly with the laser power density. The liquid flow is mainly driven by the surface tension and to a much less extent, by the buoyancy force. Heat transfer by conduction is important when the liquid velocity is small at the beginning of the pulse and during weld pool solidification. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. At very high power densities, the computed temperatures at the weld pool surface were found to be higher than the boiling point of 304 stainless steel. As a result, vaporization of alloying elements resulted from both total pressure and concentration gradients. The calculations showed that the vaporization was concentrated in a small region under the laser beam where the temperature was very high.

Physical Description

70 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2003-3490
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/918266 | External Link
  • Office of Scientific & Technical Information Report Number: 918266
  • Archival Resource Key: ark:/67531/metadc886946

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 12:09 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

DebRoy, Tarasankar (The Pennsylvania State University, University Park, PA); Fuerschbach, Phillip William; He, Xiuli (The Pennsylvania State University, University Park, PA) & Norris, Jerome T. Understanding metal vaporizaiton from laser welding., report, September 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc886946/: accessed January 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.