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Abstract 
 
The dynamics of photoevaporated molecular clouds is determined by the ablative pressure acting 
on the ionization front. An important step in the understanding of the ensuing motion is to 
develop the linear stability theory for the initially flat front. Despite the simplifications introduced 
by the linearization, the problem remains quite complex and still draws a lot of attention. The 
complexity is related to the large number of effects that have to be included in the analysis: 
acceleration of the front, possible temporal variation of the intensity of the ionizing radiation, the 
tilt of the radiation flux with respect to the normal to the surface, and partial absorption of the 
incident radiation in the ablated material. In this paper, we describe a model where all these 
effects can be taken into account simultaneously, and a relatively simple and universal dispersion 
relation can be obtained. The proposed phenomenological model may prove to be a helpful tool in 
assessing the feasibility of the laboratory experiments directed towards scaled modeling of 
astrophysical phenomena.  
 
PACS Numbers: 98.38.Dq, 98.38.Hv, 52.38.Mf, 52.57.Fg, 52.72.+v 
 

1. Introduction  
 
 The shape of photoevaporated molecular clouds (e.g., [1,2]) is most probably 
caused by a variety of hydrodynamical processes occurring under the action of the 
ablation force. Some of the models relate the observed structures to the existence of large 
initial density perturbations (see, e.g., [3-5]). The others (see below) attribute the shape to 
a development of instabilities of the initially slightly perturbed fronts. In the present 
paper, we consider several aspects of this second approach, concentrating on the linear 
stage of instability. We present a simple phenomenological model that allows one to 
describe, in a unified way, all the stabilizing and destabilizing factors which have been 
studied thus far in a piecemeal fashion.  
 The linear analyses of the ablation front instability can be traced back to the 
papers by Spitzer [6] and Frieman [7] where the instability was associated with the 
Rayleigh-Taylor (RT) instability of an accelerating interface. Kahn [8] has argued that 
the partial absorption of the ionizing radiation in the ablated material should lead to a 
stabilization of the RT instability. Vandervoort [9] developed a detailed theory of the 
ionization front instability, with the radiation tilt included, at a zero acceleration (i.e., this 
was an instability different from the RT instability). In the limit of the zero density ratio, 
η≡ρabl/ρ→0 (where ρabl and ρ is the density in the ablation flow and in the molecular 
cloud, respectively), the instability is present only for the non-zero tilt; it can be called 
the “tilted radiation” (TR) instability.  Axford [10] and Sysoev [11] included effect of 
absorption into the stability analysis of a non-accelerating front and normal incidence and 
have found a generally stabilizing effect. Williams [12] included both the radiation tilt 



and absorption (but no acceleration) and made conclusion that the radiation tilt makes the 
system more unstable at all wavelengths. Ryutov et al [13] considered the TR instability 
in the presence of acceleration (but without absorption in the ablation flow). In numerical 
simulations by Kane et al [14] and Mizuta et al [15, 16], which contained both linear and 
nonlinear stages, there were acceleration and absorption present, but no radiation tilt.  It 
was found that, in such a situation, the absorption has a strong stabilizing effect on the  
linear RT instability but non-linear perturbations would grow [16]. 
 In the present paper, which is limited entirely to the linear theory, we include in 
the analysis all three factors: acceleration, radiation tilt, and absorption in the ablation 
flow. We discuss also the “impulsive acceleration” instability. By the latter we mean the 
situation where the intensity of the photo-ionizing radiation comes as a short pulse, with 
the time-scale shorter than the dynamical time of the system. This scenario is of some 
interest because the light curves of the young OB stars may indeed have a substantial 
spike early in time [17, 18]. 
 

2. Basic assumptions 
 
 We assume that the radiation comes from a direction that forms an angle θ with 
the normal to the unperturbed planar surface (Fig. 1). The absorption coefficient along 
the ray is assumed to be just a constant number κ, so that the intensity along the ray 
varies according to equation 
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dI * /ds = "#I *, where s is a coordinate along the ray. We 
use an asterisk to designate the energy flux at the plane normal to the direction of the 
rays. We denote this intensity at the unperturbed surface of the cloud as 
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I
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radiation reaches the molecular cloud, the absorption is assumed to occur in a zero-
thickness layer. In this last respect, our model is identical to that used in Refs. [6, 13].  
 The ablation pressure is determined by the energy flux I through the surface of the 
cloud. Following the model used in Ref. [8], we assume that the ablation pressure is some 
growing function of I,  
  pa=pa(I).         (1) 
In the unperturbed state this energy flux is 
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I
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 In this brief communication we discuss only the simplest model of the cloud, 
within which the cloud material is considered as an incompressible fluid. As was shown 
in Ref. [11], the model of an incompressible fluid yields the results that are very close to 
a more sophisticated model of the cloud as a compressible ideal gas. 
 The ablation pressure accelerates the cloud in the negative direction of the axis z 
(Fig. 1). The absolute value g of the acceleration is equal to  
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g =
pa

"h
,        (2) 

where h is the cloud thickness. The effective gravity force in the frame attached to the 
unperturbed ablation front is directed towards z>0.   
 We assume that the density in the ablation flow is much smaller than ρ, and 
present results corresponding to the limit η≡ρabl/ρ→0. We work in the frame moving 
together with the unperturbed ablation front. In this frame, the cloud material flows 
through the surface of the ablation front with the velocity  
  

! 

v =" pabl /#abl        (3) 



In the limit of η→0 that we consider in the most of this paper, this velocity is negligible 
and we ignore it.  
 

3. Equations for perturbations 
 
 Perturbation of the interface between the cloud and the ablation flow leads to the 
perturbation of the energy flux I through the perturbed surface. There are two sources for 
this perturbation. First, if the surface gets tilted with respect to its original orientation, the 
angle between the rays and the surface changes, thereby leading to change of I. If the 
plane of incidence of the incoming radiation is the xz plane, as shown in Fig. 1, then the 
corresponding change of I is 
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"I = I
0

*
sin#$% /$x , where ξ(x,y) is the displacement of the 

surface in the z direction. Second, if certain element of the surface is displaced, the 
intensity changes because of the change of the absorption along the ray. This contribution 
is, obviously, 
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"I =#$ , so that he total perturbation of intensity is 
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sin#$% /$x +&%( ) . This leads to the perturbation of the ablation pressure, 
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where C>0 is a coefficient of order of unity: 

! 

C = (I
0

*
/ pa )["pa (I0) /"I0]. 

 At this point, it is convenient to perform a Fourier transform in the xy plane, and 
separate the spatial and temporal variables. In other words, perturbation will have the 
following dependence on x,y, and t: exp(-iωt+ikxx+ikyy). An instability would correspond 
to Γ≡Imω>0. We use also notation α for the angle between the two-dimensional wave 
vector k and the axis x (Fig. 1), so that kx=kcosα. For such perturbations, according to Eq. 
(4), 
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"pa = Cpa ik sin# sin$ +%( )& .      (5) 
 By considering the dynamics of perturbations inside the slab, one can relate the 
pressure perturbation at the inner side of the perturbed interface to the displacement of 
the interface. This can be done in a standard way (in particular, see the corresponding 
derivation in Ref. [13]). As the pressure perturbation at the inner side of the perturbed 
surface has to be equal to δpa, we obtain that (Cf. Eq. (10) in Ref. [13]) 
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Then, from Eqs. (5) and (6), one obtains the following dispersion relation, that contains 
effects of radiation tilt, radiation absorption, and acceleration: 
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kghC ikh sin$ cos% +&h( )cothkh # k 2g2 1#C ikh sin$ cos% +&h( )[ ] = 0 (7) 
 
 

4. The analysis of the dispersion relation 
 

 It is instructive to see what this dispersion relation predicts in the limiting cases 
that have been analyzed in the past. To consider a situation of a semi-infinite cloud with 
no acceleration (as it was done in Refs. [9-12]), one has to replace g in Eq. (7) by its 
expression (2) and take the limit of large h. One then obtains that 
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" 2 # k(pa /$)C ik sin% cos& +'( ) = 0      (8) 
In the limit of no absorption (κ=0), we essentially recover the results by Vandervoort (for 
a low-density ablation flow, η→0): no instability at the normal incidence (θ=0), and 
instability in the presence of the radiation tilt, with the growth rate proportional to the 
wave number, 
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If we include absorption, then, at a normal incidence, one obtains non-damped 
oscillations, whereas in the presence of the tilt, the instability is present at arbitrary large 
absorption coefficient. The latter result corresponds to that obtained in the linear analysis 
[12]. In the limit of large absorption, κ>>k, the growth rate is equal to:    
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Im" = ±k sin# cos$
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      (10) 

 Development of perturbations in the presence of acceleration and absorption, was 
studied numerically in Ref. [16] for normal incidence. In this case, our Eq. (7) yields: 
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k$gh2Ccothkh # k 2g2 1#C$h( ) = 0    (11) 
For large-enough absorption coefficients such that Cκh>1, the system becomes stable. 
This agrees with the results of Ref. [16].  Dependence of the growth rate on the 
absorption coefficient in the unstable domain (Cκh<1) is illustrated by Fig. 2. The real 
part of frequency of the unstable modes is equal to zero, i.e., in this regard, they behave 
as standard RT perurbations.  
 Finally, if we include all the ingredients, i.e., absorption, tilt, and gravity (i.e., 
return to the general equation (7)), we find an instability that exists at any absorption 
coefficient (at a non-zero tilt). This is illustrated by Fig. 3, where the normalized growth 
rate is presented for the case of κh=2, where the system would be stable at a normal 
incidence (θ=0).  Unlike the “standard” RT instability, perurbations here have a final real 
frequency (i.e., a final phase velocity along the surface) – a feature that can be exploited 
to experimentally identify the mode in possible laboratory experiment [13].  
 

5. Impulsive irradiation 
 

  It was noted by Pound [19] that the dynamical time of evolution of the Eagle 
Nebula is much shorter than the evolutionary time of the typical O-type star, the ones that 
produce the ionizing radiation. This circumstance points at a possibility that the stars are 
still in a transient stage of their formation, and their luminosity may have varied 
significantly during the past years. Such variations, including non-monotonous variations, 
with the luminosity passing through a maximum, is a common phenomenon in the 
evolution of very young stars (e.g., [17, 18]). To get some insights into thepossible 
implications of this effect, we consider the following simple model: that the ablative 
pressure “turns on” at t=0, reaches the maximum and “turns off” at some t=t0, which is 
much shorter that the growth time of perturbations. This model corresponds to the model 
of “impulsive acceleration,” which is sometimes used to imitate the Richtmyer-Meshkov 
instability.  In order for our model of absorption to work, the time t0 should, on the other 
hand, exceed the transit time of the ablated gas over the distance of the order of 1/k. We 
will assume that this condition is satisfied.  



 To make further simplification, we consider only perturbations with kh>2-3. So 
that we can neglect the feed-through to the back surface of the cloud and concentrate on 
what is going on at the front surface. For the time-dependent ablative pressure, one 
cannot any more consider the exp(-iωt+ikxx+ikyy) dependence of perturbations on time 
and has to seek perturbations of the form f(t)exp(ikxx+ikyy). Quite analogously to Eq. (8) 
but with the acceleration effects included, one then obtains for the function ξ(t): 
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In the absence of radiation tilt and absorption, one recovers the standard RT equation for 
the acceleration depending on time (see Eq. (2)). Assuming that the initial condition 
ξ(t=0)=ξ0, 

! 

˙ " (t = 0) = 0, one readily finds that for the very short pulse  
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where 
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0
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$ . With no tilt and no absorption, one finds a standard result for 

the impulsive acceleration. For normal incidence, the large-enough absorption (κhC>1) 
causes the front inversion. If a substantial (θ~1) tilt is present, the second term in the 
bracket becomes dominant. It causes a 900

 phase shift in the x direction.  
 The impulsive acceleration just after the “lighting up” of the OB-type stars may 
be an additional mechanism for launching a subsequent evolution of molecular clouds.  
 Work performed under the auspices of the U.S. DoE by UC LLNL under contract 
No W-7405-Eng-48. MWP supported by NSF Grant No. AST-0228974. 
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   Fig. 1. The geometry of the problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 The normalized growth rate at a zero tilt vs the normalized absorption coefficient. 
At κh>1 the RT instability ceases to exist.  
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Fig. 3. The growth rate (solid line) and real frequency (dashed line) for κh=2, C=1,  and 
kh=1 vs the tilt angle θ. Note the different normalization of the real and imaginary parts. 
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