Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products

PDF Version Also Available for Download.

Description

Direct mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable final form. The process utilizes a slurry of water, with bicarbonate and salt additions, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, resulting in dissolution of the mineral and precipitation of magnesium carbonate (MgCO3). Optimum results have been achieved using heat pretreated serpentine feed material and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was ... continued below

Creation Information

O'Connor, William K.; Dahlin, David C.; Rush, G.E.; Dahlin, Cheryl L. & Collins, W. Keith January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 76 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Direct mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable final form. The process utilizes a slurry of water, with bicarbonate and salt additions, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, resulting in dissolution of the mineral and precipitation of magnesium carbonate (MgCO3). Optimum results have been achieved using heat pretreated serpentine feed material and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Process mineralogy has been utilized to characterize the feed and process products, and interpret the mineral dissolution and carbonate precipitation reaction paths.

Notes

Publisher as SME Preprint 01-091, Society for Mining, Metallurgy, and Exploration (SME), Littleton, CO

Source

  • SME Annual Meeting and Exhibit, Denver, CO, Feb. 26-Mar. 1, 2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ARC-2001-027
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 897114
  • Archival Resource Key: ark:/67531/metadc886774

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 1:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 76

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

O'Connor, William K.; Dahlin, David C.; Rush, G.E.; Dahlin, Cheryl L. & Collins, W. Keith. Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products, article, January 1, 2001; (digital.library.unt.edu/ark:/67531/metadc886774/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.