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Abstract

The objective of this work is to investigate the thick diffusion limit of various spa-
tial discretizations of the one-dimensional, steady-state, monoenergetic, discrete-
ordinates neutron transport equation. This work specifically addresses the two
lowest order nodal methods, AHOT-N0 and AHOT-N1, as well as reconsiders the
asymptotic limit of the Diamond Difference method.

The asymptotic analyses of the AHOT-N0 and AHOT-N1 nodal methods show
that AHOT-N0 does not possess the thick diffusion limit for cell edge or cell average
fluxes except under very limiting conditions, which is to be expected considering
the AHOT-N0 method limits to the Step method in the thick diffusion limit. The
AHOT-N1 method, which uses a linear in-cell representation of the flux, was shown
to possess the thick diffusion limit for both cell average and cell edge fluxes. The
thick diffusion limit of the DD method, including the boundary conditions, was de-
rived entirely in terms of cell average scalar fluxes. It was shown that, for vacuum
boundaries, only when σt, h, and Q are constant and σa = 0 is the asymptotic
limit of the DD method close to the finite-differenced diffusion equation in the
system interior, and that the boundary conditions between the systems will only
agree in the absence of an external source. For a homogeneous medium an effective
diffusion coefficient was shown to be present, which was responsible for causing nu-
meric diffusion in certain cases. A technique was presented to correct the numeric
diffusion in the interior by altering certain problem parameters. Numerical errors
introduced by the boundary conditions and material interfaces were also explored
for a two-region problem using the Diamond Difference method. A discrete dif-
fusion solution which exactly solves the one-dimensional diffusion equation in a
homogeneous region with constant cross sections and a uniform external source
was also developed and shown to be equal to the finite-differenced diffusion dis-
cretization for c = 1 in the system interior, where again the boundary conditions
again only agree in the absence of an external source. It was also shown that
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for c < 1 the exact discrete diffusion solution is written in terms of hyperbolic
functions, with expressions which limit to the exact solution for the c = 1 case as
c→ 1. Finally, a transport discretization is developed which reproduces the exact
S2 solution for the case of a purely scattering homogeneous region with vacuum
boundary conditions, and an extension to the discretization for the case of c < 1
is found by considering a Taylor series expansion of the exact answer centered at
c = 0.
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CHAPTER

ONE

Introduction

It has been said that the central problem of nuclear reactor theory is the deter-

mination of the distribution of neutrons in the reactor, for it is this distribution

which determines the rate at which nuclear reactions occur. From detailed knowl-

edge of this distribution it is also possible to determine the stability of the nuclear

chain reaction. The process by which neutrons interact, be it through scattering

off other nuclei, being absorbed by other nuclei, or leaking out of system, is known

as neutron transport.

In a broad sense there are two approaches to the neutron transport problem,

stochastic and deterministic methods. The stochastic approach or Monte Carlo

method, is based on using pseudorandom numbers and nuclear interaction data

to simulate the life of a large number of neutrons on a digital computer and then

statistics are used to determine the behavior of the average particle. Determin-

istic methods on the other hand generally deal with a mathematical relationship

possessing a solution which describes the expected neutron distribution with the

two major deterministic approaches being diffusion theory and transport theory.

Diffusion theory treats neutrons in the reactor much like gas molecules in air, with

the process being driven by the movement of neutrons from an area of high con-

centration to an area of low concentration. This theory can be inaccurate in cases

where neutrons travel a relatively large distance between successive interactions,

and in this case it is desirable to use the neutron transport equation.
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The neutron transport equation is often called the linear Boltzmann equation

because of its resemblance to the Boltzmann equation which describes the kinetic

theory of gas mixtures. The neutron transport equation is a more accurate de-

scription of the transport process, but unfortunately it is very difficult to solve for

almost all practical problems. For this reason a multitude of numerical methods

have been developed so that the transport equation can be solved on a computer.

The numerical methods used to solve the transport equation are a very active area

of research and are at the heart of this work.

Specifically we will examine a number of spatial discretizations of the transport

equation for the simplified case of one-dimensional, monoenergetic, steady-state

transport. The spatial discretizations we will consider include the Diamond Differ-

ence, Step, AHOT-N0, and AHOT-N1 methods. We are interested to see whether

these spatial discretizations, for a so-called diffusive problem, asymptotically limit

to the spatially discretized diffusion equation. We know that if an ultra-fine spa-

tial mesh is used that all of the transport discretizations considered will result in

“good” solutions. However this type of analysis asks whether they will still result

in “good” solutions if the spatial cells used in the problem are optically thick. This

asymptotic analysis allows us to gauge the accuracy of these numerical methods for

certain types of problems and also sheds lights on the limitations of the methods.

It is important to know as much as possible about any numerical method so that

the numerical results generated by the computer can be trusted by the engineers

who rely on them.

In this work we will present a brief literature review which covers the general

areas of neutron transport, the diffusion limit analysis, and the class of nodal

methods. Some mathematical background on transport and diffusion theories will

be given and previous developed results of interest will be rederived and presented.

In Chapter 3 we will analyze the nodal methods while in Chapter 4 we will consider

the asymptotic analysis of the Diamond Difference method and also an analytically

exact discretization of the diffusion equation. Finally in Chapter 5 we will present

preliminary results from an attempt to develop a transport discretization which is

based on the exact solution to the discrete-ordinates transport equation with the

S2 quadrature set.
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1.1 Literature Review

This work is primarily focused on analyzing the behavior of the one-dimensional,

monoenergetic, neutron transport equation in so-called diffusive regimes using an

asymptotic expansion of the neutron flux. The neutron transport equation an-

alyzed as well as being one-dimensional and monoenergetic is time-independent

and discretized in angle and space. Angular discretization is achieved through the

use of discrete-ordinates, commonly known as the SN method. The spatial dis-

cretization schemes considered include the well known Diamond Difference (DD)

and Step methods as well as the zeroth and first order nodal methods, AHOT-N0

and AHOT-N1. Although this work at its core deals with the neutron transport

equation, the asymptotic limits of interest have strong ties to the diffusion approx-

imation, sometimes referred to as the P1 approximation. Therefore the accuracy

and behavior of the diffusion approximation as a mathematical representation of

radiation transport phenomena is also a topic of interest.

In an attempt to briefly review the relevant work fundamental to this thesis

there are a number of topics which will be discussed. First classic works detail-

ing the foundations of neutron transport theory will be examined, followed by a

discussion on the development of asymptotic solutions to transport problems in

diffusive regimes. The extension of asymptotic methods to angularly and spatially

discretized one-speed problems will then be covered in detail before attention is

shifted to the development of nodal discretization methods for the neutron trans-

port equation.

1.1.1 Neutron Transport Theory

The neutron transport equation, also known as the linear Boltzmann equation, has

been studied extensively due to describing phenomena ranging from the theory of

sound propagation to radiative transfer in the atmosphere, although in this work

we will only be considering the linear Boltzmann equation as a way to describe the

transport of neutrons through a medium. The conceptual framework for applying

the linear Boltzmann equation to neutral particle transport has been described in

depth in a number of books and solutions under many limiting conditions have also

been developed. The works by Davison and Sykes [1], Case and Zweifel [2], and Bell
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and Glasstone [3] stand out as thorough and detailed studies on the formulation

of neutron transport theory and its general properties. These manuscripts also

discuss various approximations to the transport equation and describe analytic

solutions of classic problems which are still of interest today. Bell and Glasstone

also contains two particularly useful chapters regarding the Discrete-Ordinates

Method and the P1 Approximation.

However, with the advent of digital computing numerical solutions to the trans-

port equation have become the primary tool of nuclear reactor designers and shield-

ing analysts, thus making computational methods for the solution of the transport

equation an important focus of the transport community. Much of the conceptual

foundation for computational transport methods has been compiled and systemat-

ically described in the text by Lewis and Miller [4]. This is a detailed work which

begins from the basics with the formulation of the transport equation and method-

ically leads to derivations and analyses of a broad range of numerical techniques.

The sections pertaining to the Diamond Difference and Step spatial discretizations

of the SN method are especially relevant to this work.

1.1.2 Asymptotic Solutions of Neutron Transport

Problems

Work on asymptotic solutions to the neutron transport equation for diffusive prob-

lems was started in the early 1970’s. One of the earliest articles published on the

topic was in 1974 by Larsen and Keller [5], who considered an asymptotic solution

of the multi-dimensional, time and energy dependent transport equation. The so-

lution was separated into an interior part, a boundary layer part, an initial part,

and an initial boundary part. They employed an asymptotic expansion of the in-

terior neutron flux about a small dimensionless parameter, ε, which is the ratio

of a typical mean free path to a typical problem dimension. The other solution

components were also analyzed using relationships in ε. The results obtained from

the generalized analysis were then applied to one-speed transport theory and it was

shown to leading order that for a near critical reactor the steady-state asymptotic

expansion of the interior neutron flux satisfies the well-known diffusion equation.

The relationship developed between transport and diffusion theory through this
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analysis was very significant. For the class of problems considered diffusion the-

ory emerged not as the result of a set of approximations but rather as a rigorous

asymptotic limit of the full transport equation.

Habetler and Matkowksy [6] closely followed this work with an article which

reiterated the details of deriving diffusion theory as an asymptotic limit of trans-

port theory on a system’s interior, for problem configurations whose character-

istic dimensions are large compared to the medium’s mean free path. Boundary

layer analyses were performed for a general inhomogeneous medium using matched

asymptotic expansions which resulted in a uniform asymptotic expansion of the

solution. The resulting boundary conditions are written in terms of incident angu-

lar flux and the X function [2, 7], which repeatedly appears in asymptotic analyses

of the transport equation. The extrapolation distance derived from the resulting

asymptotic boundary condition is compared to the extrapolation distance of other

commonly used diffusion boundary conditions (Mark, Marshak and Variational),

for the Milne problem. It is seen that the extrapolation distance resulting from the

matched asymptotic expansions is equivalent to the exact value obtained analyti-

cally for the Milne problem, while the Marshak and Mark extrapolation distances

are not equivalent, at least up to the P5 angular approximation.

Much subsequent work was done on diffusion theory as an asymptotic limit to

transport theory for nearly critical systems with small mean free paths. The results

are presented by Larsen [8] in an excellent review article which summarizes all of

the previous work on the topic. He first describes the premise of the analysis and

then outlines the entire development of asymptotic theories for both homogeneous

and heterogeneous media. The review also covers open questions by discussing the

theoretical gaps which exist in the asymptotic theories outlined. This article is

valuable because it condenses many preexisting analyses and ideas into a concise

and very manageable work.

1.1.3 Asymptotic Diffusion Limit of Discretized

Transport Problems

The body of work dealing with asymptotic solutions of transport problems had

to this point only been concerned with the continuum transport equation, but in
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1983 Larsen published an article [9] which analyzed certain spatial differencing

schemes in the same asymptotic limit as the continuum analyses. These analyses

showed that with vacuum boundary conditions the DD, Linear Characteristic, Lin-

ear Discontinuous, Linear Moments, Exponential, and Alcouffe schemes converge

in this limit to the correct transport or diffusion result while Weighted Diamond

Difference schemes do not. This article proved to be only a starting point for a

much more detailed analysis of spatially discretized transport equations in slab

geometry.

In 1987 Larsen, Morel, and Miller [10] wrote their seminal paper considering

asymptotic solutions to transport problems discretized in space and angle. The dif-

fusive regime considered is equivalent to that considered by the works summarized

in [8]: an optically thick, scattering dominated medium. The regime could now be

characterized as either thick or intermediate depending on the optical thickness of

the cells relative to ε. The asymptotic limit of the spatially discretized transport

equation was then shown to be dependent upon both the optical thickness regime

and the spatial discretization method. Furthermore the discretized system of equa-

tions could either be formulated in terms of cell edge or cell average fluxes. For

either a cell edge or cell center formulation and a given optical thickness regime

any spatial discretization which asymptotically limits to a legitimate diffusion dis-

cretization is said to have the thick or intermediate diffusion limit, respectively (a

discretization is said to be legitimate if analytic diffusion theory results from the

discretized equations for an infinitely fine spatial mesh.

Asymptotic analyses were then carried out for a handful of spatial discretiza-

tion methods so that each method could be characterized as possessing or lacking

the diffusion limit for the specified optical thickness regime and cell or edge based

quantity. Five numerical problems were then chosen to test the theoretical pre-

dictions. These numerical results confirmed the predictions generated from the

asymptotic analyses. Among other results, it was shown that the Diamond Dif-

ference method possesses the intermediate diffusion limit for both cell edge and

cell average fluxes and that it has the thick diffusion limit for cell average fluxes

and conditionally for cell edge fluxes. It was also shown that the Step method has

the thick and intermediate diffusion limits for both the cell edge and cell average

fluxes only under very limiting conditions. Unlike the work done for the continuum
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transport problem, this work did not consider any type of boundary layer analysis,

which was the motivation for the complimentary work done by Larsen and Morel

[11].

The analyses carried out in [10] were only applicable in the problem interior and

assumed any boundary layers had been sufficiently resolved by the spatial mesh.

In the 1989 article by Larsen and Morel [11] these analyses were extended to pre-

dict the behavior of spatial discretization schemes in the presence of numerically

unresolved boundary layers. Before determining the accuracy of the boundary con-

ditions resulting from the asymptotic analysis it was first necessary to determine

the appropriate boundary conditions for the continuum diffusion system and then

discretize them. The resulting discretized boundary condition is written in terms

of the Case W -function [2], which can also be approximated as a polynomial in

the “directional” variable µ. This condition then provides a basis for comparing

the asymptotic conditions derived in the work. The asymptotic analysis used is

identical to that used in [10], however, angularly discretized transport boundary

conditions are now included and only the thick diffusion limit is considered. By

comparing the resulting asymptotic boundary conditions to the discretized trans-

port conditions the authors are able to predict whether or not a given spatial

discretization scheme will be accurate in the thick diffusion limit.

Two numerical problems were chosen to test the predictions and indeed the

results of these numerical tests support the predictions made. For the Diamond

Difference method it is shown that for the cell average fluxes to be accurate the

prescribed incident fluxes must satisfy a certain condition derived by Larsen and

Morel, which is satisfied, for instance, if the prescribed incident fluxes are isotropic,

in which case the cell edge fluxes will also be accurate. Should the prescribed

incident fluxes be anisotropic not only can both the cell edge and cell center fluxes

be inaccurate, but the inaccuracy will be dependent on whether the total number

of cells used in the problem is even or odd. These results show that only under

rather restrictive conditions for the prescribed incident flux on the boundary will

the Diamond Difference method produce accurate solutions in the thick diffusion

limit. Another method of interest analyzed in this work was the Linear Moments

method. This method is of interest due to its equivalence with the first order nodal

method, AHOT-N1. The authors show for this method that the cell edge fluxes
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are accurate throughout the problem domain and that the cell average fluxes are

accurate in all cells with the possible exception of those in unresolved boundary

layers. The analytic methods developed in [10] and [11] spawned a large amount

of work in the transport methods community.

Asymptotic analyses have been carried out for a wide range of spatial discretiza-

tions and for multiple geometric configurations. Discretizations analyzed include,

but are not limited to, the multiple balance SN differencing [12], discontinuous

finite element schemes [13] [14] [15], and characteristic methods [16]. Attention

has also been devoted to even-parity finite element transport solutions in the thick

diffusion limit [17] [18], while some analyses done have considered spherical geom-

etry [19] and others have worked with two-dimensional Cartesian space [15]. In

1992 Larsen published an article [20] which describes the underlying ideas behind

the asymptotic analysis, reviews the main results, and discusses some of the open

questions at the time. This article has an excellent section containing the deriva-

tion of the continuum diffusion equation as an asymptotic limit of the spatially and

angularly continuous one-dimensional transport equation. Larsen presents a new

analysis which considers a general Weighted Diamond Difference discretization and

he also includes a discussion on the potential applications of the asymptotic results

to diffusion synthetic acceleration (DSA) algorithms.

1.1.4 Nodal Transport Methods

Though asymptotic analyses have been carried out for a multitude of discretization

schemes, as mentioned previously, the class of nodal transport methods has not

been explicitly addressed. Nodal methods have the advantage of producing results

with accuracy comparable to conventional, finite difference methods, only on much

coarser meshes. By employing higher order nodal methods both solution accuracy

and computational efficiency can be enhanced.

The first generation of nodal discrete ordinates methods were developed in

the late 1970’s and early 1980’s. The methods included in this generation were

unique from other contemporary nodal methods in the fact that they converge to

the exact discrete ordinates equations as the spatial mesh becomes infinitely fine.

This class of methods includes the Discrete Nodal Transport Method (DNTM), the
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TWOTRAN nodal method, and an exponential expansion method. The DNTM

method was developed by Lawrence and Dorning [21] [22] [23], TWOTRAN came

about through the efforts of Walters [24] [25] [26] [27], and the exponential expan-

sion method was the product of Pevey [28] [29] at Oak Ridge. A review article

by Lawrence describes each of these methods and provides a historical overview of

the development of nodal transport methods up to 1986 [30].

At their core, all nodal methods are based on expanding the in-cell and surface

angular fluxes in locally defined truncated series. The early nodal transport meth-

ods differed in the order of the truncation and the relationships derived between

the expansion coefficients for the in-cell and surface fluxes. Initial work was carried

out in slab geometry but was soon extended to two-dimensional geometry. Each

of the methods developed were derived for a truncation order and dimensionality

which were decided beforehand so that any results were specific to that particu-

lar case. If a method for higher orders or dimensionality was required then the

derivation would have to be repeated. However, Azmy was able to generalize the

entire class of nodal transport methods in terms of dimensionality and truncation

order and cast them in a Weighted Diamond Difference form in his 1988 work [31].

(For a much more comprehensive review of the development of higher order nodal

methods see Azmy’s 1992 work regarding the derivation of Arbitrarily High Order

Characteristic methods (AHOT-C) [32].)

The generalized nodal framework developed by Azmy [31] was able to com-

pactly yet completely yield a closed system of equations in a general-dimension

Cartesian geometry with an arbitrary truncation order of the in-cell and surface

angular fluxes. The methods developed from this framework have come to be

known as Arbitrarily High Order Transport Nodal methods (AHOT-N), where

AHOT-N1 for example indicates the nodal scheme using a linear spatial represen-

tation of the in-cell and surface fluxes. The AHOT-N schemes are also general in

the sense that previously developed nodal methods can be shown to be special-

ized instances of AHOT-N, under certain simplifying assumptions. The AHOT-N

framework also allows for the spatial nodal moments of the flux to be written in

terms of the transverse flux moments evaluated at node surfaces as a generalized

weighted difference relation. That is, even with the complexity introduced by the

generality of the derivation the final form of the equations can still be cast in a
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simple Weighted Diamond Difference form. The AHOT-N schemes also have the

advantage of being characterized, for a given spatial expansion order, by one spa-

tial weight per dimension per direction per discrete-ordinate for all flux moments

whereas previous methods included multiple coefficients.

Many numerical experiments have been carried out to test not only the accuracy

of the high order nodal methods but the computational efficiency as well. Azmy [33]

compared the AHOT-N1 scheme in two-dimensions to two previously developed

linear nodal methods (the LN and LL methods) for three sample problems. Of

the three methods considered AHOT-N1 retains the most analyticity while the

LN method retains the least. Numerical results show that the solutions produced

by the varying methods are all similar, especially on fine meshes. The largest

variations were seen in locations with low flux levels. While this set of experiments

was focused on comparing a fixed order AHOT-N scheme to previously developed

methods, numerical experiments have also been carried out which demonstrate the

capabilities of the higher order AHOT-N schemes.

Azmy [31] used a two-dimensional, four quadrant sample problem, known now

as the Azmy benchmark, with orders from 0–9 to demonstrate the accuracy of the

AHOT-N methods. It was shown that for very high order methods (AHOT-N6 and

greater) solutions are extremely accurate with only one node per quadrant while

AHOT-N0 requires a very fine mesh to produce accurate results. In fact, results

show that AHOT-N5 requires less storage and computational time to compute a

solution with the same accuracy.

Azmy [32] also compared numerical results produced by AHOT-N and AHOT-

C methods of varying spatial approximation orders on two two-dimensional test

problems. It was shown that reference solutions produced by the nodal and char-

acteristic methods were in agreement with one another. It was also found that in

general nodal methods are advantageous for computing integrated quantities, such

as the scalar flux, while the characteristic methods excel at computing deep pen-

etration quantities, such as leakage. Azmy notes that in the quadrant containing

the fixed source in the first test problem as the scattering ratio, c, increases for a

given order and mesh the accuracy will deteriorate because the contribution from

the scattering source (approximated) increases relative to the contribution from

the fixed source (exact).
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We have outlined the development of many topics which are fundamental to the

work being presented in this thesis: neutron transport theory, numerical solutions

of transport problems, asymptotic solutions to transport problems in the contin-

uum, asymptotic solutions to discretized transport problems, and the the class of

nodal methods. It will also be of great value to present here the most relevant

aspects of these topics from a mathematical and not a developmental perspective.



CHAPTER

TWO

Introduction to Transport and

Diffusion Theories and their

Asymptotic Equivalence

As mentioned previously, this work is primarily concerned with the analysis of the

one-dimensional, monoenergetic, neutron transport equation. The specific trans-

port equation of interest is also time-independent and discretized in angle and

space. To angularly discretize the problem, the well-known discrete-ordinates (SN)

method is employed. The spatial discretization schemes specifically considered are

the DD, Step, AHOT-N0, and AHOT-N1 methods. The discretized equations

will be analyzed using an asymptotic expansion of the angular flux. The cross

sections and external source will also be scaled in such a way that the analysis

applies to diffusive regimes. Although this will be explained in more detail later,

it presently suffices to say that in a diffusive regime the solution of the continuum

diffusion equation is a good representation of the solution of the spatially contin-

uous SN equations. For this reason we are also interested in time-independent,

one-dimensional, monoenergetic diffusion solutions.

This chapter will present the general neutral particle transport problem and

reduce it to the specialized case considered. The generalized diffusion approxima-

tion will also be presented and subsequently reduced to the form used throughout
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this work. Both the transport and diffusion equations will next be spatially dis-

cretized and then the premise and mechanics of the continuum asymptotic analysis

in diffusive regimes will be presented. Finally results of interest from asymptotic

analyses of spatially discretized transport problems will be explained.

2.1 The Neutron Transport Equation

The general form of the time-independent neutron transport equation in a non-

multiplying medium is given by

[
Ω̂ · ~∇+ σt(~r, E)

]
ψ(~r, Ω̂, E) =

Q(~r, Ω̂, E) +

∫
dE ′

∫
dΩ′σs(~r, E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′), (2.1)

where these quantities represent,

• ~r ≡ Position vector ,

• Ω̂ ≡ Unit vector along the direction of neutron travel ,

• E ≡ Neutron energy ,

• ψ(~r, Ω̂, E) ≡ Angular neutron flux ,

• σt ≡ Total interaction macroscopic cross section ,

• σs ≡ Double-differential scattering macroscopic cross section ,

• Q ≡ External source .

For the case of one-dimensional, monoenergetic, isotropic-scattering neutron

transport, Eq. (2.1) simplifies to[
µ
∂

∂x
+ σt(x)

]
ψ(x, µ) =

σs(x)

2

∫ 1

−1

ψ(x, µ′)dµ′ +Q(x). (2.2)

The variable µ in this equation represents the direction cosine that the direction

of neutron travel makes with the x-axis, in the sense that µ = cos θ and θ is the
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angle between the flight path of the neutron and the x-axis. In Eq. (2.2) the

angular variable, µ, is continuous and varies in [−1, 1]. The SN approximation

consists of requiring that Eq. (2.2) hold only in certain angular directions, µn,

such that

[
µn

∂

∂x
+ σt(x)

]
ψn(x) =

σs(x)

2

∫ 1

−1

ψ(x, µ′)dµ′ +Q(x), n = 1, . . . , N.

A numerical quadrature rule is then used to introduce an approximation to the

true value of the integral term.

∫ 1

−1

ψ(x, µ′)dµ′ ≈
N∑
n=1

wnψn(x), n = 1, . . . , N

Here N refers to the total number of “directions” or discrete-ordinates to be

used. As with any numerical quadrature rule, the accuracy of the solution increases

with N . It is strongly preferred that the quadrature set chosen meets the following

three conditions:

1. The quadrature set is even-ordered and symmetric about µ = 0.

2. The rule integrates up to cubic polynomials exactly.

3. The weights are normalized to unity.

These three assumptions result in the properties of the quadrature set given by

N∑
n=1

µnwn = 0, (2.3a)

N∑
n=1

µ2
nwn =

1

3
, (2.3b)

N∑
n=1

wn = 1. (2.3c)

The most commonly used quadrature set which meets these conditions is the

Gauss-Legendre quadrature with appropriately normalized weights, which pos-
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sesses a high degree of precision, given by 2N − 1. Thus even when N = 2

this quadrature rule can integrate up to cubic polynomials exactly. The Gauss-

Legendre quadrature set is readily available from a multitude of published sources,

e.g. for N up to 12 they are given in [4], although in that specific listing the

weights are normalized to 2. Still other quadrature sets may be used, and in some

special cases will yield more accurate results. The general SN approximation in

slab geometry can now be written as

[
µn

d

dx
+ σt(x)

]
ψn(x) = σs(x)

N∑
m=1

wmψm(x) +Q(x), n = 1, . . . , N (2.4)

comprising a set of N first-order coupled ordinary differential equations. Due to

the weight normalization chosen in Eq. (2.3) the factor of 1/2 can be removed

from the scattering source term. This form of the transport equation has now

been discretized in both angle and energy with only the spatial variable still con-

tinuous. To derive an approximation to the transport solution that can be solved

numerically it is now necessary to discretize the spatial variable, x.

This discretization is achieved by first considering a spatial grid of I intervals,

as in Fig. 2.1. Each cell, i, covers the domain [xi−1/2, xi+1/2] and the midpoint

value, xi is taken to be the arithmetic average of the edge points, denoted by the

half-integer subscripts i−1/2 and i+1/2. The discretization process also assumes

that all cross section values are constant throughout a spatial cell.

Figure 2.1. Slab-Geometry Spatial Discretization into I Intervals

Using the angularly constant cross section assumption, integrating Eq. (2.4)

for a single discrete-ordinate, n, over the cell domain, [xi−1/2, xi+1/2], yields
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µn
hi

(
ψn,i+1/2 − ψn,i−1/2

)
+ σt,iψn,i = σs,i

N∑
m=1

wmψm,i +Qi, n = 1, . . . , N. (2.5)

Equation (2.5) is the set of one-dimensional discretized balance equations, it is

a mathematical expression which describes the conservation of neutrons over each

cell in the slab. In Eq. (2.5) we have defined

hi ≡ xi+1/2 − xi−1/2, (2.6)

ψn,i±1/2 ≡ ψn(xi±1/2), (2.7)

ψn,i ≡
1

hi

∫ xi+1/2

xi−1/2

ψn(x)dx, (2.8)

Qi ≡
1

hi

∫ xi+1/2

xi−1/2

Q(x)dx. (2.9)

Equation (2.5) describes the spatially discretized flux in terms of the edge

quantities, ψn,i±1/2, and the averaged quantities, ψn,i. However Eq. (2.5) presents

I relations among 2I + 1 unknown quantities per discrete-ordinate. To solve for

these quantities it is necessary to introduce an approximation via the so-called

auxiliary relationship. A very simple and common auxiliary relationship is the

Diamond Difference approximation stated as

ψn,i =
1

2

(
ψn,i+1/2 + ψn,i−1/2

)
. (2.10)

The DD relation will be referred to extensively throughout this work; Chapter

4 deals exclusively with the asymptotic analysis of the DD approximation. The

DD relation is a second-order accurate method. That is, the error introduced is

O(h2) as h → 0. The DD section in [4] also explains the positivity problems

experienced by the DD method, that is for h sufficiently large it is possible for the

DD method to produce unphysical, negative flux values. Moreover, as the number

of discrete-ordinates used increases, the mesh sizing, h, must decrease in order for

the solution to remain positive. For this reason another commonly used auxiliary
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scheme is the Step, or Upwind scheme, that has the advantage of always producing

positive results. The Step method is defined by

ψn,i±1/2 = ψn,i, µn ≷ 0. (2.11)

Upwind is an appropriate name for this scheme. It can be seen that the number

of neutrons on the cell edge which is “upwind” of the direction of neutron flight

is simply set equal to the average number of neutrons in this cell. Although this

scheme has both the advantages of simplicity and positivity it is also fairly inac-

curate. The order of the error for the Step scheme is only O(h). The comparative

accuracy of the DD and Step discretization schemes is displayed quite clearly in

Figure 3-5 of [4]. A solution algorithm which iterates on the scattering source is

also explained fully in [4]. The same algorithm is used for both of the discretization

schemes mentioned. It is important to note that the error estimates provided in

[4] and cited above are in the limit h → 0, in contrast to the thick diffusion limit

that is the primary focus of this work where h→∞.

Both the DD and Step methods are specialized cases of a larger class of schemes

termed Weighted Diamond-Difference (WDD) schemes. The generalized WDD

scheme is defined via the terms αn,i, known as spatial weights. The auxiliary

relation for the general WDD scheme thus is given by

ψn,i =

(
1 + αn,i

2

)
ψn,i+1/2 +

(
1− αn,i

2

)
ψn,i−1/2. (2.12)

It is then apparent that αn,i = 0 corresponds to the DD scheme and αn,i =

µn/|µn| corresponds to the Step scheme.

The two previously described discretization schemes are indeed simple but also

have well-known disadvantages. More advanced methods have also been used to

spatially discretize the discrete-ordinates equations with one class of advanced

methods of interest being the nodal methods. Some prominent work in the area

of nodal methods has been covered in 1.1. The two nodal schemes of particu-

lar interest to this work are the zeroth and first order spatial expansion nodal

approximations, AHOT-N0 and AHOT-N1 respectively.

Nodal methods are based on expanding the in-cell angular fluxes and surface

angular fluxes in locally defined truncated series. In multi-dimensional problems
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it is necessary to transverse average the flux over each spatial dimension, but

this step, as well as the expansion of the surface fluxes in a truncated series, is

not necessary in slab geometry. Thus, for one-dimensional problems using nodal

transport methods the only approximation made is the expansion of the scattering

and external sources as polynomials. However, the analyses in this work will only

consider external sources which are constant throughout a cell such that the only

approximation made is the spatial expansion of the scattering source in a truncated

series.

The AHOT-N0 method approximates the scattering source as constant in space

for each cell and like all AHOT-N schemes, the method can be written in a WDD

form which utilizes one spatial weight per cell per discrete ordinate. The AHOT-

N0 scheme is written similarly to the DD and Step schemes as a balance equation

and an auxiliary WDD relation, Eqs. (2.5) and (2.12), with the spatial weights

given by

αn,i = coth (δn,i)−
(

1

δn,i

)
, (2.13)

where the parameter δn,i, which is used in the AHOT-N0 spatial weights, represents

half the cell optical width measured in mean free paths, and is defined by

δn,i =
σt,ihi
2µn

. (2.14)

This system of equations can be solved using the same iterative sweeping al-

gorithm used for DD and Step schemes. This scheme has the advantage of being

analytically exact aside from the approximation of the scattering source. To raise

the accuracy of the AHOT-N0 method a logical extension is to treat the scat-

tering source in each cell as a linear function. This is exactly what is achieved

in the AHOT-N1 method. To achieve this increase in accuracy, the AHOT-N1

scheme requires storage of an extra flux variable, the first flux moment, in each

computational cell. Thus in addition to the balance and auxiliary relations for the

zeroth spatial moments of the flux, Eqs. (2.5) and (2.12), which have been used

in the previous methods, an extra equation balancing the first flux moment is also

necessary. The balance equation for the first order moment is given by
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3µn
hi

(
ψn,i+1/2 − 2ψn,i + ψn,i−1/2

)
+ σt,iψ̂n,i =

σs,i
2

M∑
m=1

wmψ̂m,i, (2.15)

while the auxiliary relation for AHOT-N1 generalizes Eq. (2.12) to(
1 + αn,i

2

)
ψn,i+1/2 +

(
1− αn,i

2

)
ψn,i−1/2 = ψn,i + αn,iψ̂n,i, (2.16)

where the spatial weights for AHOT-N1 are given by

αn,i =

[
coth (δn,i)− 1

δn,i

]
[
1− 3

δn,i

(
coth (δn,i)− 1

δn,i

)] . (2.17)

In this set of equations the zeroth flux moment is equivalent to the cell-averaged

flux calculated by AHOT-N0, DD, and Step and is represented by ψn,i. The first

moment of the flux is present due to the linear representation of the flux and is

denoted by ψ̂n,i. The parameter δn,i is defined as in Eq. (2.14) for the AHOT-N0

equations.

To form a closed system of equations, i.e. the same number of equations as

unknowns solved for, it is necessary to include boundary conditions for all of the

aforementioned systems of equations. The vacuum boundary condition is used

throughout much of this work for the sake of simplicity. The vacuum bound-

ary condition imposes the condition that there is no incident neutron flux on the

external boundaries of the problem domain and it is independent of the discretiza-

tion scheme used. Hence, when using the discrete-ordinates angular discretization

method, the vacuum boundary conditions amounts to

ψn,1/2 = 0, µn > 0 (2.18a)

ψn,I+1/2 = 0, µn < 0. (2.18b)

All of the numerical schemes described to this point are discretizations of the

one-dimensional discrete-ordinates equations. However, the neutron scalar flux

is also frequently approximated using neutron diffusion theory. In fact, in large

systems with little neutron absorption, diffusion theory yields sufficiently accurate
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solutions at a lower computational cost.

2.2 The Neutron Diffusion Equation

The one-speed, time-independent diffusion equation can be derived directly from

the one-speed transport equation given the appropriate assumptions are made. By

assuming that the angular flux has a linearly anisotropic angular dependence it is

possible to arrive at the P1 transport approximation. The P1 approximation can

be solved to find the distribution of neutrons in the spatial domain, but this can

be simplified further by assuming an isotropic external source. In the diffusion

approximation the neutron current is proportional to the spatial gradient of the

flux. This relationship is referred to as Fick’s Law,

J(~r) = −D(~r)∇φ(~r), (2.19)

where the proportionality constant, D(r̂), is termed the diffusion coefficient.

The diffusion equation resulting from these approximations has no explicit an-

gular dependence and is written purely in terms of the scalar flux. The one-speed,

time-independent, neutron diffusion equation is given by

−∇ ·D(~r)∇φ(~r) + σa(~r)φ(~r) = Q(~r). (2.20)

The absorption macroscopic cross section, σa, is related to the total and scat-

tering macroscopic cross sections by the relation, σa = σt − σs. The diffusion

coefficient, D, for the case of isotropic-scattering is given by

D(~r) =
1

3σt(~r)
. (2.21)

If Eqs. (2.20) and (2.21) are written for the specialized case of slab geometry

they yield

− d

dx
D(x)

d

dx
φ(x) + σa(x)φ(x) = Q(x), (2.22)

D(x) =
1

3σt(x)
. (2.23)
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Spatial discretization is achieved by again considering a spatial grid of I inter-

vals, as in Fig. 2.1. Each cell, i, covers the domain [xi−1/2, xi+1/2] and the midpoint

value, xi is taken to the be the arithmetic average of the edge points, denoted by

the half-integer subscripts i−1/2 and i+1/2. If it is assumed that all cross sections

are constant within a computational cell, Eq. (2.22) can be integrated over the

interval [xi−1/2, xi+1/2], resulting in

−Di
d

dx
φ(x)

∣∣∣∣xi+1/2

xi−1/2

+ σa,iφi = Qi. (2.24)

In accordance with previous notation, in this equation Di refers to the value

of the diffusion coefficient in cell i with the same notation used for σa,i. The cell

average value of the scalar flux has been approximated by the midpoint value,

φ(xi) ≈ φi and similarly the cell average value of the external source, if not con-

stant, has been approximated by the midpoint value, Q(xi) ≈ Qi.

The derivative term in Eq. (2.24) is then evaluated by using forward/backward

finite differencing and imposing continuity of the neutron current at a cell interface,

e.g. xi+1/2, using Fick’s Law.

−Di

φi+1/2 − φi
hi/2

= −Di+1

φi+1 − φi+1/2

hi+1/2
(2.25)

The notation used for the edge valued scalar flux in Eq. (2.25) is analogous to

that used for the cell edge angular fluxes in Eq. (2.7). The edge value φi+1/2 can

be explicitly solved for in terms of cell average fluxes, approximated by their cell-

center values, using this condition. An analogous condition can be written for the

interface at xi−1/2 so that φi−1/2 can also be found in terms of cell average scalar

flux values. The final step to finding a discretized diffusion system is evaluating the

derivative term in Eq. (2.24) and again using forward/backward finite differencing.

The edge values found from the continuity condition can then be substituted and a

relation involving three adjacent cell centered scalar flux values is found, resulting

in the standard three-point diffusion stencil

− (ai,i−1)φi−1 + (ai,i−1 + ai,i+1)φi − (ai,i+1)φi+1 + σa,iφi = Qi, i = 2, . . . , I − 1,

(2.26)
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where the a coefficients are given by

ai,i±1 =
2/hi

hi±1/Di±1 + hi/Di

. (2.27)

All that remains to be done so that the diffusion equation may solved nu-

merically is to account for the boundary conditions. Eq. (2.26) comprises I − 2

equations in I unknowns, the cell centered, or approximately the cell-averaged

scalar fluxes. The most commonly used boundary conditions are the vacuum and

reflective boundary. This work primarily concerns itself with the vacuum bound-

ary, which in the case of diffusion theory and ignoring the extrapolation length is

the same as saying that φ1/2 = φI+1/2 = 0. Integrating Eq. (2.22) in cells i = 1

and i = I and imposing the vacuum boundary condition at the system edges yields(
a1,2 +

2D1

h2
1

+ σa,1

)
φ1 − (a1,2)φ2 = Q1, (2.28a)

− (aI,I−1)φI−1 +

(
aI,I−1 +

2DI

h2
I

+ σa,I

)
φI = QI . (2.28b)

With these equations the system is now closed, i.e. I equations in I unknowns,

and it is possible to solve for all the φi unknowns explicitly. In fact, it is possible

to write this system in the simple tridiagonal matrix form

A~φ = ~Q, (2.29)

where the elements of the tridiagonal matrix A are given by the coefficients of the

φi unknowns in Eqs. (2.26), (2.28a), and (2.28b), while element i of ~φ and ~Q are

given by φi and Qi respectively.

Equation (2.29) can then be solved using any standard linear algebra technique

such as LU Decomposition or a stationary iterative method. Both the boundary

equations, Eqs. (2.28a) and (2.28b), and the balance equation, Eq. (2.26), simplify

considerably in a homogeneous medium with uniform cell spacing and external

source. The simplified equations are worth writing out since they will be referred

to explicitly in Chapter 4. The homogeneous medium, uniform mesh analog to

Eqs. (2.26) and (2.28) are
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−D
(
φi−1 − 2φi + φi+1

h2

)
+ σaφi = Q, (2.30)

(
3D

h2
+ σa

)
φ1 −

(
D

h2

)
φ2 = Q, (2.31a)

−
(
D

h2

)
φI−1 +

(
3D

h2
+ σa

)
φI = Q. (2.31b)

This simplified system can also be written in matrix form, only the elements

in matrix A will differ. While finding the diffusion theory solution is obviously a

simpler problem than finding the transport theory solution it should be empha-

sized that diffusion theory is only applicable for large systems with little absorption.

Diffusion theory is also known to be inaccurate near material interfaces and at sys-

tem boundaries. Essentially diffusion theory fails where the flux becomes strongly

anisotropic in its angular dependence.

Now that the foundations of both transport and diffusion theories, and the

numerical methods for their discretization, have been reviewed and with all de-

pendent and independent variables discretized so that a numerical solution can be

sought, an asymptotic analysis of the transport equation in the so-called diffusion

limit will be presented.

2.3 The Asymptotic Diffusion Limit

Analyses of the asymptotic limit of the neutron transport equation in the contin-

uum for diffusive regimes were performed by Larsen and Keller [5], Habetler and

Matkowsky [6], and Larsen [8] between 1974 and 1980. These analyses showed

that in diffusive regimes diffusion theory constitutes an asymptotic limit of trans-

port theory. Diffusive systems are loosely defined as those with large total cross

sections, σt, and small absorption cross sections and external sources, σa and Q,

respectively, effectively allowing the neutrons to experience many collisions and

survive many such collisions.

In this section the asymptotic analysis of the one-speed, isotopic scattering, one-

dimensional, discrete-ordinates transport equation, published by Larsen, Morel,

and Miller [10], will be reviewed. The one-dimensional discrete-ordinates transport
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equation is given by Eq. (2.4), but here the cross sections and external source are

denoted using tildes (e.g., σt → σ̃t), and the scattering cross section, σs, has been

rewritten as the difference between the total and absorption cross sections.

[
µn

d

dx
+ σ̃t(x)

]
ψn(x) = (σ̃t(x)− σ̃a(x))

N∑
m=1

wmψm(x) +Q(x), n = 1, . . . , N

(2.32)

To proceed with the asymptotic analysis the physical cross sections and external

source (i.e. the tilde quantities) are scaled by the dimensionless parameter ε in the

following manner:

σ̃t(x) =
σt(x)

ε
, (2.33a)

σ̃a(x) = εσa(x), (2.33b)

Q̃(x) = εQ(x). (2.33c)

From this point on physical quantities will be represented using tildes while

the ε independent components of these quantities are represented without tildes.

The parameter ε is defined as the ratio of a typical mean free path to the scale

length of the system. A more thorough discussion of ε and the chosen scalings

can be found in Section II of [10]. However it is important to note that under this

definition, the diffusion limit implies that the parameter ε→ 0 as the typical mean

free path in the system diminishes compared to the system size, thus approaching

0. In highly diffusive systems the probability of neutron interaction is very large

and so in highly diffusive systems the parameter ε tends toward 0.

The scalings in Eq. (2.33) were chosen so that as ε→ 0 the total cross section

becomes large while the absorption cross section and external source become small.

This describes a regime dominated by neutron scattering and defines the concept

of the diffusion limit as it will be used in this work, i.e., the diffusion limit is

the limit as ε → 0. This work will also take advantage of standard asymptotic

notation. Using this notation it is said that σ̃t is O(ε), meaning σ̃t is at most some

constant times the parameter ε. Likewise, it can be said σt is O(1) because it is

invariant to changes in ε and also that σ̃a is O(ε−1).
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The specific scaling chosen also has three very desirable properties, enumerated

by Larsen [20], that should be briefly noted. Under this scaling both the infinite

medium solution φ∞ = Q̃/σ̃a = Q/σa and the diffusion length,

L =
1√

3σ̃aσ̃t
=

1√
3σaσt

(2.34)

are O(1).

It can also be seen easily that if the selected scaling is applied to the diffusion

approximation, Eq. (2.22), the resulting equation is independent of ε. When con-

sidering the transport problem in Eq. (2.32) under the given scaling the resulting

equation is

[
µn

d

dx
+
σt(x)

ε

]
ψn(x) =

(
σt(x)

ε
− εσa(x)

) N∑
m=1

wmψm(x)+εQ(x), n = 1, . . . , N.

(2.35)

With having introduced the scaled parameters into the transport problem it is

now possible to expand the angular flux in powers of ε as shown by

ψn(x) =
∞∑
k=0

εkψ(k)
n (x). (2.36)

By inserting the asymptotic expansion, Eq. (2.36), into Eq. (2.35) a system of

equations for 0 ≤ k ≤ ∞ is obtained. The resulting asymptotic relation is satisfied

in the limit ε→ 0 for each power of ε. The first equation, equating the coefficients

of ε−1, is given by

σt(x)

(
ψ(0)
n (x)−

N∑
m=1

wmψ
(0)
m (x)

)
= 0. (2.37)

The solution to Eq. (2.37) is simply given by

ψ(0)
n (x) = φ(0)(x), (2.38)

where φ(0) is the zero order asymptotic estimate of the scalar flux defined by
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φ(k)(x) ≡
N∑
m=1

wmψ
(k)
m (x). (2.39)

Equation (2.37) clearly implies that the zero order asymptotic estimate of the

angular flux, i.e. ψ
(0)
n , is isotropic. At this point φ(0)(x) is still an unknown

quantity. The asymptotic equation corresponding to the coefficients of the O(1)

terms again involves ψ
(0)
n and is given by

σt(x)

(
ψ(1)
n (x)−

N∑
m=1

wmψ
(1)
m (x)

)
= −µn

d

dx
φ(0)(x). (2.40)

For a solution of this equation, ψ
(1)
n , to exist a certain solvability condition

needs to be satisfied. This condition is found by multiplying the equation by the

quadrature weights, wn and then summing over all of the discrete angles. This

operation causes the left hand side of the equation to vanish, resulting in

0 = −

(
N∑
m=1

µmwm

)
d

dx
φ(0)(x), (2.41)

which implies that for any non constant scalar flux it must be true that

0 =
N∑
m=1

µmwm. (2.42)

Thus if the quadrature set chosen in the discrete-ordinates framework satisfies

this condition the solution to Eq. (2.40) is given by

ψ(1)
n (x) = φ(1)(x)− µn

σt(x)

d

dx
φ(0), (2.43)

where we recognize that the Gauss-Legendre quadrature set does satisfy the con-

dition given in Eq. (2.42) as explicitly stated in Eq. (2.3a).

Generating Eq. (2.43) has provided another equation involving φ(0)(x), but

another undetermined quantity, φ(1)(x), has also been introduced. For this reason

the expression equating the coefficients of ε is considered, written as
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σt(x)

(
ψ(2)
n (x)−

N∑
m=1

wmψ
(2)
m (x)

)
=

− µn
d

dx

(
φ(1)(x)− µn

σt(x)

d

dx
φ(0)(x)

)
− σa(x)φ

(0)(x) +Q(x). (2.44)

Rather than solve Eq. (2.44) for ψ
(2)
n (x), a solvability condition is imposed. It

is easily seen that if Eq. (2.44) is multiplied by wn and summed over all n the

left hand side vanishes. This implies that the summation over the right hand side

must also be equal to 0.

N∑
n=1

[
− d

dx

(
µnφ

(1)(x)− µ2
n

σt(x)

d

dx
φ(0)(x)

)
− σa(x)φ

(0)(x) +Q(x)

]
wn = 0 (2.45)

After performing the summation it is shown that the solvability condition re-

quires the following relation must hold:

− d

dx

1

3σt(x)

d

dx
φ(0)(x) + σa(x)φ

(0)(x) = Q(x). (2.46)

Should the quadrature set chosen satisfy the condition

N∑
n=1

wnµ
2
n =

1

3
,

which the previously chosen set does, as shown in Eq. (2.3b), it is easy to see that

Eq. (2.46) is very similar to the standard diffusion approximation. In fact if Eq.

(2.46) is multiplied by ε it can be written in terms of the physical cross sections

and external source as

− d

dx
D̃(x)

d

dx
φ(0)(x) + σ̃a(x)φ

(0)(x) = Q̃(x). (2.47)

Comparing this with the diffusion theory equation given in Eq. (2.22) we

observe they are identical with the diffusion coefficient set to D̃ = (3σ̃t)
−1. This

analysis shows that the asymptotic solution to the transport problem in a diffusive



28

regime is given by

ψn(x, ε) = φ(0)(x) +O(ε). (2.48)

The relationship stated above is a restatement of Eq. (2.38) with explicit

acknowledgement that the angular anisotropy in the angular flux is of O(ε0). It

has also now been shown that the zero order component of the scalar flux, φ(0),

satisfies the diffusion approximation given in Eq. (2.47). Thus, this relation states

that in a diffusive regime the angular flux is approximately equal to the scalar flux,

with an error term that is O(ε), such that as ε goes to 0 the two fluxes approach one

another. This relation is the basis for recognizing that the diffusion approximation

is an asymptotic limit of transport theory.

2.4 Asymptotic Solutions of Discretized

Transport Problems

The previous analysis shows that the continuous one-speed, diffusion equation is an

asymptotic limit of the one-speed, isotropic-scattering transport equation in slab

geometry. This result uncovers yet another link between transport and diffusion

theory, however it begs one to question whether the same relationship holds true for

the discrete versions of the transport and diffusion equations discussed in Sections

2.1 and 2.2. This question was thoroughly examined by Larsen, Morel, and Miller

in an influential 1987 paper [10].

If this relationship did hold then one would expect the discretized transport

equation to asymptotically limit to the discretized diffusion equation. However, it

was shown in Section 2.1 that the discretization of the transport equation requires

an auxiliary relationship or discretization scheme (e.g. Diamond Difference). It will

be seen shortly that for some discretization schemes the discrete transport equation

limits to a discrete diffusion equation and for others it does not. When discussing

discretized problems it is also necessary to determine whether the analysis will be

done in the “thick” or “intermediate” diffusion limit as defined by Larsen, Morel,

and Miller [10].

In the thick diffusion limit the optical thickness of spatial cells become increas-
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ingly thick as ε → 0. This implies that in the scaling described in Sec. 2.3 the

mesh spacing, h, is chosen in a manner that is independent of ε, i.e., h is O(1),

while σt provides the growth in the optical cell size as ε→ 0,

τthick =
σth

ε
= O(ε)−1 (2.49)

In the thick diffusion limit the mesh spacing is said to be on the order of a

“scale length”, the typical distance by which the angular flux varies by an O(1)

amount. For problems in a diffusive regime the scale length can be roughly equated

with the diffusion length, L.

Along with the scale length another natural measure of length is the mean free

path, the typical distance a neutron travels between successive interactions. In the

intermediate diffusion limit the mesh spacing is on the order of a typical mean free

path, O(ε), which implies that the optical thickness in this regime is given by

τint = σth = O(1). (2.50)

With the concept of the thick and intermediate limits explained, Figure 2.2,

adapted from [10], clarifies the relationships among continuum transport theory,

continuum diffusion theory, discretized transport theory, and discretized diffusion

theory. The solid lines in Figure 2.2 indicate relationships proven to be true. It

was shown in Section 2.3 that the continuum, or analytic, SN equations limit to the

continuum diffusion equation in the limit ε → 0. Truncation error analyses have

been used in the past to prove that “good” discretizations of the diffusion equation

and of the spatial dependence of the SN equations limit to their respective analytic

counterparts as the cell size, h, approaches 0.

The dotted lines indicate possible relationships, which may or may not hold for

a given spatial discretization scheme. In the thick limit this relationship is said to

hold if the discretized discrete-ordinates equations asymptotically limit to a legit-

imate diffusion discretization. A diffusion discretization is considered legitimate if

the analytic diffusion equation is obtained from the discretized equation as h→ 0.

If it is shown for a given discretization scheme that a relationship indicated by a

dotted line holds then that spatial discretization is said to have the corresponding

diffusion limit. Thus it is possible for any discretization scheme to possess both
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Figure 2.2. Comparison of Asymptotic Diffusion Limits

limits, neither limit, only the thick diffusion limit, or only the intermediate dif-

fusion limit. Furthermore a distinction can be made between cell edge and cell

center fluxes such that each flux quantity can individually be said to possess one,

neither, or both of the limits.

Larsen, Morel, and Miller [10] investigated five different discretization schemes

with regards to both the cell average and cell edge fluxes. The analyses they per-

formed are concerned with the interior of the slab only and assume any boundary

layers have been adequately resolved by the spatial mesh. The conclusions drawn

from these analyses can be found in Table 1 of [10]. A portion of this table is re-

produced in Table 2.1 to present the results obtained for the Diamond Difference

and Step methods for later reference in this thesis. For the Diamond Difference cell

edge fluxes in the thick diffusion limit the entry maybe means yes only if incident
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Table 2.1. Selected Results from Larsen, Morel, and Miller [10]

Intermediate Thick
Edge Average Edge Average

Diamond yes yes maybe yes
Step maybe maybe maybe maybe

boundary fluxes are isotropic and is no otherwise. The maybe entries for the Step

method only become yes under the very restrictive conditions that σa,i = Qi = 0

and also that the product (σt,ihi) is a constant for 1 ≤ i ≤ I. If these conditions

are not met then the Step method does not have the diffusion limit.

The analyses performed to obtain these results, specifically for the thick limit,

are at the core of this thesis and are used extensively to re-analyze the Diamond

Difference method and the AHOT-N0 and AHOT-N1 schemes. To understand

the results adapted from [10] in Table 2.1 and the new results derived in this

thesis a good foundation in the asymptotic analysis of the discretized equations is

necessary. Therefore both the thick regime Step and Diamond Difference method

derivations of Larsen, Morel, and Miller [10] will now be presented.

2.4.1 The Step Method

The Step method itself was described in Section 2.1 as a specific case of a WDD

scheme with weights µn/|µn|. Writing the balance and Step equations using the

scalings from Eqs. (2.33) yields

µn
hi

(
ψn,i+1/2 − ψn,i−1/2

)
+
σt,i
ε
ψn,i = (

σt,i
ε
− εσa,i)

M∑
m=1

wmψm,i + εQi, (2.51)

ψn,i = ψn,i±1/2, µn ≷ 0. (2.52)

An asymptotic expansion similar to that given in Eq. (2.36) is now introduced

through

ψn ≈
∞∑
k=0

εkψ(k)
n . (2.53)



32

Inserting Eq. (2.53) into Eqs. (2.51) and (2.52), with the assumption that

both the cell averaged and cell edge fluxes can be represented through this power

series in ε we follow the same procedure used in the continuous case, equating

the coefficients of the various powers of ε and recursively solving the resulting

set of equations for coefficients of the orders of ε in the asymptotic expansion of

the angular flux. The first power of ε considered is ε−1, where by equating the

coefficients of ε−1 we obtain

σt,i

(
ψ

(0)
n,i −

M∑
m=1

wmψ
(0)
m,i

)
= 0. (2.54)

Therefore the following relation must be true, with the quantity φ
(0)
i still being

undetermined,

ψ
(0)
n,i = φ

(0)
i . (2.55)

This relationship implies that the leading order component of the angular flux

expansion is isotropic. Armed with this relationship between the zero order terms

of the scalar and angular flux, the remaining task is then to find an expression for

φ
(0)
i . To find this expression the terms in the asymptotic expansion of the Step

method of ε0 are examined. By equating these coefficients we obtain

σt,i

(
ψ

(1)
n,i −

M∑
m=1

wmψ
(1)
m,i

)
= −µn

hi

(
ψ

(0)
n,i+1/2 − ψ

(0)
n,i−1/2

)
, (2.56)

ψ
(0)
n,i = ψ

(0)
n,i±1/2. (2.57)

Equations. (2.57) and (2.55) can now be substituted into Eq. (2.56) to produce

σt,i

(
ψ

(1)
n,i −

M∑
m=1

wmψ
(1)
m,i

)
= −µn

hi

(
φ

(0)
n,i+1/2∓1/2 − φ

(0)
n,i−1/2∓1/2

)
, µn ≷ 0. (2.58)

The solvability condition which is then applied to Eq. (2.58) consists of mul-

tiplying Eq. (2.58) by wn and summing over all angles. with the result of this

operation given by
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0 = − 1

hi

(∑
µn>0

µnwn

)(
φ

(0)
i−1 − 2φ

(0)
i + φ

(0)
i+1

)
. (2.59)

It is easy to see that Eq. (2.59) is comparable to the discretized diffusion

equation, Eq. (2.30), only under the very restrictive conditions listed previously

in this section. That is, it is necessary that σa = Q = 0 and the product (σt,ihi)

is a constant for 1 ≤ i ≤ I. Under these conditions it can be said the cell average

fluxes in the Step method have the thick diffusion limit. The same can be said for

the cell center fluxes since these can be directly related to φ
(0)
i by combining Eqs.

(2.55) and (2.57).

These results show that in the thick diffusive regime the Step method does not

generally limit to a legitimate discretization of the diffusion equation. The theory

proposed by Larsen, Morel, and Miller [10] is that any scheme which does limit to

a legitimate diffusion discretization will provide much more accurate results than

a scheme which does not limit to a legitimate diffusion discretization. Thus these

results imply that in the thick regime the Step method will produce inaccurate

results unless the conditions given above are met. As it turns out the Step method

is quite inaccurate in this regime as confirmed by numerical results generated by

Larsen, Morel, and Miller which will be presented in Section 2.4.3. These numer-

ical results will also confirm the predictions made by the results of the Diamond

Difference analysis which will be presented next.

2.4.2 Diamond Difference

The asymptotic analysis of the Diamond Difference method developed by Larsen,

Morel, and Miller [10] was expanded in the followup paper by Larsen, and Morel

[11] to specifically account for unresolved boundary layers. Although to this point

the boundaries have been ignored, the analysis including boundary layers will be

included here for the sake of completeness. The analysis presented here is lengthy

but essential for the understanding of the new work which will described in Chapter

4.

The Diamond Difference method was described in Section 2.1 as the WDD

scheme with spatial weights of 0. Writing the balance and Diamond Difference
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relations along with the boundary conditions and using the scalings from Eq. (2.33)

results in the problem described by

µn
hi

(
ψn,i+1/2 − ψn,i−1/2

)
+
σt,i
ε
ψn,i = (

σt,i
ε
− εσa,i)

M∑
m=1

wmψm,i + εQi, (2.60a)

ψn,i =
1

2

(
ψn,i+1/2 + ψn,i−1/2

)
, (2.60b)

ψn,1/2 = fn, µn > 0 (2.60c)

ψn,I+1/2 = gn, µn < 0, (2.60d)

where the quadrature rules again adhere to the properties described by Eqs. (2.3).

This analysis will frequently use the operation of multiplying an equation by

µknwn and summing over all angles, which we term “taking the kth angular mo-

ment” of the equation. An angular cell edge or cell average quantity which has

undergone this operation is also said to be the kth moment of the original quan-

tity. Using this nomenclature the zeroth, first, and second angular moments of the

angular flux are defined by

φ(k) =
M∑
m=1

wmψ
(k)
m , (2.61a)

ϑ(k) =
M∑
m=1

µmwmψ
(k)
m , (2.61b)

ν(k) =
M∑
m=1

µ2
mwmψ

(k)
m . (2.61c)

Again the analysis begins by inserting the asymptotic expansion of Eq. (2.53)

into Eqs. (2.60). The coefficients of powers of ε are then equated creating a

recursive set of equations. As with the Step method there is only one equation of

O(ε−1), given by

σt,i

(
ψ

(0)
n,i −

M∑
m=1

wmψ
(0)
m,i

)
= 0 (2.62)
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Again the solution to Eq. (2.62) is isotropic,

ψ
(0)
n,i = φ

(0)
i , (2.63)

with the quantity φ
(0)
i still undetermined. There are four equations of O(ε0), given

by

φ
(0)
i =

1

2

(
ψ

(0)
n,i+1/2 + ψ

(0)
n,i−1/2

)
, (2.64a)

σt,i

(
ψ

(1)
n,i −

M∑
m=1

wmψ
(1)
m,i

)
= −µn

hi

(
ψ

(0)
n,i+1/2 − ψ

(0)
n,i−1/2

)
, (2.64b)

ψ
(0)
n,1/2 = fn, µn > 0 (2.64c)

ψ
(0)
n,I+1/2 = gn, µn < 0. (2.64d)

In order to more easily analyze Eq. (2.64a), we define the quantity

η
(0)
n,i+1/2 ≡ ψ

(0)
n,i+1/2 − 3ν

(0)
i+1/2, (2.65)

where ν
(0)
i+1/2 is the second angular moment of the angular flux at a cell edge as

defined by Eq. (2.61c). This definition implies that the following is also true,

M∑
n=1

µ2
nη

(0)
n,i+1/2wn = 0, (2.66)

which also allows for Eq. (2.64a) to be written as the sum

1

3
φ

(0)
i =

1

2

(
ν

(0)
i+1/2 + ν

(0)
i−1/2

)
+

1

6

(
η

(0)
n,i+1/2 + η

(0)
n,i−1/2

)
. (2.67)

The second angular moment of Eq. (2.67) is then taken, producing

1

3
φ

(0)
i =

1

2

(
ν

(0)
i+1/2 + ν

(0)
i−1/2

)
. (2.68)

Substituting Eq. (2.68) into Eq. (2.67) also results in

0 = η
(0)
n,i+1/2 + η

(0)
n,i−1/2, (2.69)

which in term implies
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η
(0)
n,i+1/2 = (−1)iη(0)

n . (2.70)

With the above relationships available it is possible to rewrite Eqs. (2.65) and

(2.66), respectively, in terms of η
(0)
n as

ψ
(0)
n,i+1/2 = 3ν

(0)
i+1/2 + (−1)iη(0)

n , (2.71)

M∑
n=1

µ2
nη

(0)
n wn = 0. (2.72)

Equation (2.71) now explicitly shows the leading order component of the angu-

lar edge flux split into an isotropic and an anisotropic component. This relation-

ship can now be substituted into the O(ε0) neutron balance equation, Eq. (2.64b),

resulting in

σt,i

(
ψ

(1)
n,i −

M∑
m=1

wmψ
(1)
m,i

)
= −µn

hi

[
3
(
ν

(0)
i+1/2 − ν

(0)
i−1/2

)
+ 2(−1)iη(0)

n

]
. (2.73)

If the zeroth angular moment of Eq. (2.73) is taken, the solvability condition

given by

0 =
M∑
n=1

µnη
(0)
n wn (2.74)

results. This is a condition which is required for the existence of a solution to Eq.

(2.73), a solution expressed by

ψ
(1)
n,i = φ

(1)
i − µn

hi

[
3
(
ν

(0)
i+1/2 − ν

(0)
i−1/2

)
+ 2(−1)iη(0)

n

]
. (2.75)

The quantity φ
(1)
i is still undetermined, along with φ

(0)
i . Before considering any

O(ε) equations we consider the O(ε0) boundary equations. We begin by inserting

the separated leading order edge angular flux, Eq. (2.71), into Eqs. (2.64c) and

(2.64d), the left and right boundary conditions, respectively. This substitution

results in the following equations,
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3ν
(0)
1/2 + η(0)

n = fn, µn > 0 (2.76a)

3ν
(0)
I+1/2 + (−1)Iη(0)

n = gn, µn < 0 (2.76b)

which imply the following is true

η(0)
n =

fn − 3ν
(0)
1/2, µn > 0

(−1)I(gn − 3ν
(0)
I+1/2), µn < 0.

(2.77)

From Eqs. (2.72) and (2.74) it is known that the first and second angular

moments of η
(0)
n are equal to zero. Substituting the expression for η

(0)
n , given by

Eq. (2.77), into the two angular moment relations makes it possible to explicitly

solve for ν
(0)
1/2 and ν

(0)
I+1/2, the second angular moment of the flux at the slab edges.

Solving for these quantities yields the following expressions:

ν
(0)
1/2 =

∑
µn>0

(
µn
6γ

+ µ2
n

)
fnwn + (−1)I

∑
µn<0

(
−|µn|

6γ
+ µ2

n

)
gnwn. (2.78a)

ν
(0)
I+1/2 =

∑
µn<0

(
|µn|
6γ

+ µ2
n

)
gnwn + (−1)I

∑
µn>0

(
−µn

6γ
+ µ2

n

)
fnwn. (2.78b)

The constant, γ, is a function of the quadrature set, and is defined by

γ ≡
∑
µn>0

µnwn ≈
1

4
. (2.79)

Equations (2.78) effectively define the boundary conditions of the spatially dis-

cretized system of equations based on the second angular moments, ν
(0)
i+1/2. Larsen

and Morel examine the accuracy of these boundary conditions upon the comple-

tion of the Diamond Difference analysis. With the boundary values out of the way

we direct our attention back toward the system interior by considering the O(ε)

equations of the Diamond Difference and balance equations,

ψ
(1)
n,i =

1

2

(
ψ

(1)
n,i+1/2 + ψ

(1)
n,i−1/2

)
, (2.80)
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σt,i

(
ψ

(2)
n,i −

M∑
m=1

wmψ
(2)
m,i

)
= −µn

hi

(
ψ

(1)
i+1/2 − ψ

(1)
i−1/2

)
− σa,iφ

(0)
i +Qi. (2.81)

We then take the zeroth angular moment of Eq. (2.81), which yields

ϑ
(1)
i+1/2 − ϑ

(1)
i−1/2 = hi

(
−σa,iφ(0)

i +Qi

)
, (2.82)

where the first angular moment on the edge, ϑ
(1)
i+1/2, is defined by Eq. (2.61b) .

We then proceed to write Eq. (2.82) for the (i + 1)th cell and add this result

to equation Eq. (2.82) to obtain

ϑ
(1)
i+3/2 − ϑ

(1)
i−1/2 = −

(
σa,i+1hi+1φ

(0)
i+1 + σa,ihiφ

(0)
i

)
+ (hi+1Qi+1 + hiQi) . (2.83)

The next step we take is to substitute Eq. (2.80) into Eq. (2.75) and take the

first angular moment of this equation. Utilizing the condition given by Eq. (2.72)

and subtracting the equation for the ith cell from the equation for the (i + 1)th

cell yields

ϑ
(1)
i+3/2 − ϑ

(1)
i−1/2 = 2

M∑
n=1

µn

(
ψ

(1)
n,i+1 − ψ

(1)
n,i

)
wn

= − 2

σt,i+1hi+1

(
ν

(0)
i+3/2 − ν

(0)
i+1/2

)
+

2

σt,ihi

(
ν

(0)
i+1/2 − ν

(0)
i−1/2

)
. (2.84)

As previously mentioned, Eqs. (2.83) and (2.84) are valid in the slab interior,

i.e., i ∈ [2, I − 1]. The first angular moment edge fluxes can be eliminated by

equating the right hand side of both equations. The resulting expression is given

by
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− 1

3σt,i+1hi+1

(
ν

(0)
i+3/2 − ν

(0)
i+1/2

)
+

1

3σt,ihi

(
ν

(0)
i+1/2 − ν

(0)
i−1/2

)
+

1

4

(
σa,i+1hi+1

(
ν

(0)
i+3/2 + ν

(0)
i+1/2

)
+ σa,ihi

(
ν

(0)
i+1/2 + ν

(0)
i−1/2

))
=

1

6
(hi+1Qi+1 + hiQi) , 2 ≤ i ≤ I − 1. (2.85)

By inserting Eq. (2.68) into Eq. (2.63) the leading order cell average angular

fluxes are then given by

1

3
ψn,i =

1

2

(
ν

(0)
i+1/2 + ν

(0)
i−1/2

)
+O(ε). (2.86)

The cell edge fluxes are given by Eq. (2.71) and thus to leading order are given

by

1

3
ψn,i+1/2 = ν

(0)
i+1/2 +

1

3
(−1)iη(0)

n +O(ε). (2.87)

The second angular moment edge flux, ν
(0)
i+1/2, is now determined in the slab

interior by Eq. (2.85) and on the boundaries by Eqs. (2.78). The quantity η
(0)
n is

determined by Eq. (2.77).

Equation (2.85) shows that to leading order the cell average angular flux cal-

culated using the Diamond Difference method does limit to a legitimate diffusion

discretization in the slab interior. This is true because Eq. (2.85) is an edge based

discretization of the diffusion equation. Granted that we are convinced Eq. (2.85)

is a legitimate diffusion discretization, i.e. that if h→ 0 Eq. (2.85) results in Eq.

(2.22), then we can see from Eq. (2.87) that unless η
(0)
n = 0 the cell edge angular

fluxes do not generally have the thick diffusion limit. As h → 0 the term η
(0)
n is

invariable and thus (ν
(0)
i+1/2 + (−1)iη

(0)
n ) will not be a legitimate discretization of

the diffusion equation.

There are some peculiarities regarding this diffusion discretization. Most no-

table is that the second moment of the angular flux rather than the scalar flux itself

is the unknown quantity in the diffusion discretization. The authors do explicitly

mention that this choice was made for the sake of algebraic simplicity but the anal-

ysis itself is not restricted to the chosen definition of ν
(0)
i+1/2. The discretization is
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also based on cell edges as opposed to the cell average based discretization derived

in Section 2.2. It is also noteworthy that the diffusion discretization in Eq. (2.85)

differs from the previously developed discretization by including external sources

and absorption terms from cells adjacent to cell i.

For the Diamond Difference method to fully possess the thick diffusion limit

it is not sufficient to limit to a legitimate diffusion discretization in the slab in-

terior. It is also necessary for any unresolved boundary layers to be accounted

for. To determine the accuracy of the method on the system boundaries Larsen

and Morel determine how closely the conditions given in Eqs. (2.78) approximate

the appropriate diffusion boundary conditions, which they discuss thoroughly in

the introduction to [11]. These boundary conditions rely on the Case W-function

[2], a component included in solutions of half-space problems arising from formal

boundary layer analysis of the diffusion limit to the transport problem. This type

of analysis is necessary because the diffusion equation cannot adequately repre-

sent the correct transport boundary conditions [34]. Specifically these boundary

conditions in the continuum are given by

1

2
φ(0) =

∫ 1

0

W (µ)f(µ)dµ, (2.88a)

1

2
φ(L) =

∫ 0

−1

W (−µ)g(µ)dµ. (2.88b)

Here L represents the x-coordinate of the slab edge and the W-function itself

is given in terms of Chandrasekhar’s X-function [7] by

W (µ) =
µ

X(−µ)

[∫ 1

0

s

X(−s)
ds

]−1

. (2.89)

However, Larsen and Morel note that the W-function is smooth and can be

represented fairly well by the polynomial

W̃ (µ) = 0.956µ+ 1.565µ2 ± 0.0035 ≈ µ+
3

2
µ2. (2.90)

Larsen and Morel then conclude that the boundary conditions derived in the

asymptotic analysis, Eqs. (2.78) only closely approximate Eq. (2.90) if the follow-

ing condition is true:
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0 =
∑
µn>0

(
−µn

6γ
+ µ2

n

)
fnwn =

∑
µn<0

(
−|µn|

6γ
+ µ2

n

)
gnwn. (2.91)

The authors note that this condition does not generally hold, but does for

the case of isotropic incident flux. Thus for a homogeneous slab with vacuum

boundaries it can be expected that both the cell average and cell edge angular

fluxes have the thick diffusion limit. It should be recognized that even with vacuum

boundaries a heterogeneous slab will not generally have the thick diffusion limit for

either the cell average or cell edge fluxes due to possible anisotropy at the material

interface.

For an anisotropic incident boundary flux, Eqs. (2.78) result in very highly

distorted boundary conditions, where the distortion itself is dependent on whether

the arbitrarily chosen number of cells, I, is even or odd. Larsen and Morel note

that the variation on the left boundary is due solely to an anisotropic incident

boundary flux on the right boundary while the variation on the right boundary is

due solely to an anisotropic incident boundary flux on the left boundary.

The analytic predictions made by the asymptotic analyses of the Step and

Diamond Difference methods have previously been summarized in Table 2.1 and

have now been rigorously derived. To test these predictions numerically Larsen,

Morel, and Miller [10] chose five problems while Larsen and Morel [11] chose two

problems, composing a set of seven distinct numerical experiments. One problem

from each set will be presented in the following section.

2.4.3 Numerical Results

Two numerical experiments have been chosen from among the seven conducted

by Larsen, Morel, and Miller [10] and Larsen and Morel [11]. These two prob-

lems were specifically chosen because the boundary conditions are vacuum and the

same numerical experiments will be used to test the new analyses being presented

in following chapters. All of the problems were solved using the S8 Gauss-Legendre

quadrature set and the reference solutions were created using the Diamond Differ-

ence method on a uniform mesh containing 104 spatial cells. Solutions for Problem

1 were generated using the Diamond Difference and Step methods with the indi-

cated mesh size and then compared to the reference solution.
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Problem 1

The first numerical experiment consists of a purely scattering homogeneous slab

containing an external source with vacuum boundaries, defined in the thick regime

by the following problem:

µn
dψn
dx

+ 100ψn = 100
M∑
m=1

ψmwm + 0.01, 0 < x < 10

ψn(0) = 0, µn > 0

ψn(10) = 0, µn < 0

h = 1.0.

The theoretical predictions made suggest that even with such thick spatial

cells (100 mean free paths) the Diamond Difference method will produce accurate

results because it limits to a legitimate diffusion discretization. In contrast, the

Step method analysis predicts that the Step method will not be accurate with such
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Figure 2.3. Problem 1: Larsen, Morel, and Miller [10] Cell Average Thick Regime
Results
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Figure 2.4. Problem 1: Larsen, Morel, and Miller [10] Cell Edge Thick Regime Results

optically thick cells. For this specific problem the predictions made with regard to

each method are the same for both the cell edge and cell averaged fluxes. Figures

2.3 and 2.4 confirm the above predictions. It can be seen for both cell edge and

cell average scalar fluxes that the Diamond Difference results are nearly identical

to the reference solution while the results produced by the Step method are grossly

inaccurate.

These numerical results support the hypothesis made by Larsen, Morel, and

Miller [10] that a spatial discretization that possesses the thick diffusion limit will

yield accurate results when using optically thick spatial cells. Thus the asymptotic

analysis technique can be used to determine which transport spatial discretizations

will result in solutions with accuracy comparable to diffusion theory and which

spatial discretizations will fail to provide accurate solutions in the regime in which

h→∞, well outside the realm of tradition truncation analyses.

Problem 2

The second numerical experiment consists of a two region slab with vacuum bound-

aries. One region contains a flat external source along with finite absorption while
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the other region is purely scattering with no external source. The experiment is

defined by the following problem:

µ
∂

∂x
ψ(x, µ) + σt(x)ψ(x, µ) =

σs(x)

2

∫ 1

−1

ψ(x, µ′)dµ′ +
Q(x)

2
, 0 < x < 20

ψ(0, µ) = 0, µ > 0

ψ(20, µ) = 0, µ < 0

σt(x) = 100,

σs(x) =

90, 0 < x < 10

100, 10 < x < 20

Q(x) =

10, 0 < x < 10

0, 10 < x < 20

h =

10/N, 1 < x < 10

1.0, 10 < x < 20.

Figs. 2.5 and 2.6 show the results of the two region problem in terms of cell

average and cell edge fluxes, respectively. It is quite apparent that the material

interface introduces significant inaccuracy to the Diamond Difference results. The

cell average fluxes oscillate slightly in the source region but are reasonably accurate.

However, upon entrance to the scattering region there is a large degradation in

the quality of the solution. Larsen and Morel state that the reason for these

inaccuracies is the highly oscillatory nature of the edge fluxes, apparent in Fig.

2.6.

The authors conjecture that it is the oscillating behavior of the edge fluxes,

specifically at the material interface, which leads to the inaccuracies in the cell

average fluxes. The evidence for this is given by the two different values of N

considered. For N = 11 the edge fluxes enter the scattering region well above the

reference solution and subsequently the cell average fluxes in this case are also well

above the reference solution. The converse is true for the case where N = 10,
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Figure 2.5. Problem 2: Larsen and Morel [11] Cell Average Thick Regime Results

the edge fluxes enter the scattering region below the reference solution and the

cell average fluxes for the same case are well below the reference solution in the

scattering region.

No satisfactory explanation for the origin of the oscillations present in the cell

edge scalar fluxes is provided in [11]. The asymptotic analysis suggests that for this

problem the cell-edge fluxes will be accurate since the prescribed incident (vacuum)

fluxes are isotropic, although it is possible that the oscillations arise solely due to

the anisotropy of the flux at the material interface. Although it is not a certainty

that the asymptotic analysis is applicable in the source region since as the authors

note, the region is not diffusive in an asymptotic sense because of the magnitude

of σa. However they also go on to state that the diffusion approximation produces

accurate results in this region. The behavior of the Diamond Difference method

in this numerical experiment will be re-examined in more detail in Chapter 4,

and a potential explanation for the oscillation seen in the edge fluxes will also be

provided.

To this point the relevant background has been presented as has the theory

and mechanics of the asymptotic analysis on discretized transport problems. The
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Figure 2.6. Problem 2: Larsen and Morel [11] Cell Edge Thick Regime Results

following chapters will extend this analysis to the AHOT-N0 method and also show

that the analysis of the Linear Discontinuous method, performed by Larsen and

Morel [11], applies to the first order nodal method, AHOT-N1, as well. Finally the

asymptotic limit of the Diamond Difference method will be rederived in terms of

cell average rather than cell edge scalar fluxes. Problems 1 and 2 will again be used

to test predictions arising from the asymptotic analyses regarding the behavior of

the spatial discretizations.



CHAPTER

THREE

Asymptotic Analyses of Low Order

Nodal Methods

3.1 Introduction

The class of Arbitrarily High Order Transport methods of the Nodal type (AHOT-

N) was introduced in Section 1.1.4 and the low order methods, AHOT-N0 and

AHOT-N1, were specifically formulated in Section 2.1. In this chapter the solutions

to these methods are now considered for transport problems in thick, diffusive

regimes. The same methods used to analyze and classify the Step and Diamond

Difference methods can be applied to these low order nodal methods.

AHOT-N0 is the lowest order nodal method and in slab geometry is exact aside

from the representation of the scattering source. In the AHOT-N0 approximation

the scattering source is represented mathematically by polynomials of order zero

(constants) in a spatial cell. The AHOT-N0 discretization can be written as a

weighted Diamond Difference scheme with one distinct spatial weight, αn,i, per

spatial cell, per discrete ordinate, as given in Eq. (3.1c), where 0 ≤ |αn,i| ≤ 1.

Thus the spatial weights of the AHOT-N0 method lie between the extremes of the

Diamond Difference and Step methods.

The AHOT-N1 method uses a linear approximation of the spatial dependence

and in slab geometry the AHOT-N1 equations also are exact aside from the repre-
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sentation of the scattering source by polynomials of order one (linear functions) in

a spatial cell. The AHOT-N1 discretization can also be written as a WDD scheme

with one distinct spatial weight, αn,i, per spatial cell, per discrete ordinate, given

by Eq. (3.13d). The AHOT-N1 method differs from the WDD schemes considered

so far by possessing multiple balance equations. This method includes both a zero

and first spatial moment of the scalar flux and so a balance equation for each of

these quantities is necessary.

The same asymptotic analysis performed previously on the Step and Diamond

Difference methods will now be applied to the AHOT-N0 and AHOT-N1 discretiza-

tions. Initial hopes were that the AHOT-N0 method, being “more exact” than the

Step and Diamond Difference methods, would possess the thick diffusion limit un-

conditionally for both the cell average and cell edge fluxes. Unfortunately, the

asymptotic analysis shows and numerical results confirm that AHOT-N0 only pos-

sesses the thick diffusion limit under the same restrictive conditions as the Step

method. It can be shown however that AHOT-N1 rigorously possesses the thick

diffusion limit for cell average and cell edge fluxes, even in the presence of unre-

solved boundary layers. The AHOT-N1 equations can actually be written in such

a manner that the Larsen and Morel [11] analysis of the Linear Moments method is

directly applicable and the results then inferred. The conclusions drawn regarding

both nodal methods will be confirmed using two numerical experiments presented

in Sec. 2.4.3.

This chapter will close with a brief examination of the the Explicit Slope (ES)

discretization, derived by Hanshaw and Larsen [35]. This discretization seeks to

emulate the accuracy of the AHOT-N1 method in the thick limit while only requir-

ing the same amount of storage as the AHOT-N0 method. This is accomplished by

approximating the scattering source as a linear function with an explicitly defined

slope.

3.2 AHOT-N0 Thick Limit Analysis

The AHOT-N0 method is completely characterized by the balance equation, aux-

iliary relation, and spatial weight given by
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µn
hi

(
ψn,i+1/2 − ψn,i−1/2

)
+ σ̃t,iψn,i = σ̃s,i

M∑
m=1

wmψm,i + Q̃i, (3.1a)

ψn,i =

(
1 + α̃n,i

2

)
ψn,i+1/2 +

(
1− α̃n,i

2

)
ψn,i−1/2, (3.1b)

α̃n,i = coth

(
σ̃t,ihi
2µn

)
−

(
1

σ̃t,ihi

2µn

)
. (3.1c)

We have foregone the inclusion of the boundary conditions for simplicity and

also because the outcome of the analysis indicates including the boundary condi-

tions would be unnecessary.

As in previous analyses the first step is to replace the scattering cross section

by the difference of the total and absorption cross sections, and then scale the cross

sections and fixed source by the parameter ε using Eqs. (2.33). The scaled system

of equations is then given by

µn
hi

(
ψn,i+1/2 − ψn,i−1/2

)
+
σt,i
ε
ψn,i =

(σt,i
ε
− εσa,i

) M∑
m=1

wmψm,i + εQi, (3.2a)

ψn,i =

(
1 + αn,i

2

)
ψn,i+1/2 +

(
1− αn,i

2

)
ψn,i−1/2, (3.2b)

αn,i = coth

(
σt,ihi
2µnε

)
−
(

2µnε

σt,ihi

)
. (3.2c)

We now include the previously used asymptotic expansion, Eq. (2.53), which

expands the cell average and cell edge angular fluxes in power series in the asymp-

totic variable ε. However, we can see from Eq. (3.2c) that simply equating the

coefficients of ε is not possible in this case due to the presence of the hyperbolic

cotangent. To amend this it is necessary to find an expansion for the AHOT-N0

spatial weights as ε→ 0. The first step in this expansion is to rewrite the spatial

weights as
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αn,i =


+

(
1+e

(
−

σt,ihi
|µn|ε

)

1−e

(
−

σt,ihi
|µn|ε

) −
(

2|µn|ε
σt,ihi

))
, µn > 0

−

(
1+e

(
−

σt,ihi
|µn|ε

)

1−e

(
−

σt,ihi
|µn|ε

) −
(

2|µn|ε
σt,ihi

))
, µn < 0.

(3.3)

We can now split the first term into two components as shown by

αn,i =


+

(
1

1−e

(
−

σt,ihi
|µn|ε

) + e

(
−

σt,ihi
|µn|ε

)

1−e

(
−

σt,ihi
|µn|ε

) −
(

2|µn|ε
σt,ihi

))
, µn > 0

−

(
1

1−e

(
−

σt,ihi
|µn|ε

) + e

(
−

σt,ihi
|µn|ε

)

1−e

(
−

σt,ihi
|µn|ε

) −
(

2|µn|ε
σt,ihi

))
, µn < 0.

(3.4)

We now expand the first two terms in each case about the exponential term

as ε → 0, which, when combined with the remaining linear term, results in the

asymptotic spatial weights given by

αn,i = ±
(

1− 2|µn|ε
σt,ihi

)
+O

(
e−

σt,ihi
|µn|ε

)
. (3.5)

With this expression for the AHOT-N0 spatial weights in hand we can proceed

to substitute the asymptotic expansion of Eq. (2.53) into Eqs. (3.2). We also

now substitute the expansion developed for the spatial weights, Eq. (3.5) into Eq.

(3.2c). These substitutions result in the equation set

ε−1σt,i

(
ψ

(0)
n,i −

M∑
m=1

wmψ
(0)
m,i

)
+

ε0

[
σt,i

(
ψ

(1)
n,i −

M∑
m=1

wmψ
(1)
m,i

)
+
µn
hi

(
ψ

(0)
n,i+1/2 − ψ

(0)
n,i−1/2

)]
+O(ε) = 0, (3.6a)

ε0
(
ψ

(0)
n,i − ψ

(0)
n,i±1/2

)
+O(ε) = 0. (3.6b)

We can easily see here that up to 0(ε), Eqs. (3.6) are identical to those of

the Step method. If the O(ε) components were considered then the differences
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between the two methods would begin to appear. However since the O(ε−1) and

the O(ε0) terms sufficed to determine φ
(0)
i for the Step method the same will hold

true for AHOT-N0. To verify this reasoning we can now collect and equate the

coefficients of ε−1 and ε0. The lone O(ε−1) equation, Eq. (3.7) comes from the

neutron balance relation,

σt,i

(
ψ

(0)
n,i −

M∑
m=1

wmψ
(0)
m,i

)
= 0. (3.7)

This relation implies that the quantity, φ
(0)
i is given by

ψ
(0)
n,i = φ

(0)
i . (3.8)

At this point φ
(0)
i itself is still an undetermined quantity. We again proceed to

the relations for the next order of epsilon in the hopes of finding an expression for

φ
(0)
i . The auxiliary relation for O(ε0) is given by

ψ
(0)
n,i = ψ

(0)
n,i±1/2, µn ≷ 0 (3.9)

which is readily seen to be the same as the O(ε0) Step relation.

The balance relation at O(ε0) is then specified by

σt,i

(
ψ

(1)
n,i −

M∑
m=1

wmψ
(1)
m,i

)
= −µn

hi

(
ψ

(0)
n,i+1/2 − ψ

(0)
n,i−1/2

)
. (3.10)

Just as with the Step method we can now substitute Eq. (3.8) and Eq. (3.9)

into the O(ε0) balance relation, Eq. (3.10), resulting in

σt,i

(
ψ

(1)
n,i −

M∑
m=1

wmψ
(1)
m,i

)
= −µn

hi

(
φ

(0)
i+1/2∓1/2 − φ

(0)
i−1/2∓1/2

)
. (3.11)

If we now take the zeroth angular moment of Eq. (3.11) the resulting relation

contains only the unknown φ(0),

0 = − 1

hi

(∑
µn>0

µnwn

)(
φ

(0)
i−1 − 2φ

(0)
i + φ

(0)
i+1

)
. (3.12)

It is clear that Eq. (3.12) is identical to Eq. (2.59) and thus also comparable to
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the discretized diffusion equation, Eq. (2.30), only under the same very restrictive

conditions given for the Step method. AHOT-N0 limits to a legitimate diffusion

discretization if σa = Q = 0 and the product (σt,ihi) is a constant for 1 ≤ i ≤ I.

Only under these conditions can it be said that the cell average fluxes in the

AHOT-N0 method have the thick diffusion limit. The same can be said for the

cell edge fluxes since these can be directly related to φ(0) by combining Eqs. (3.8)

and (3.9).

This result is disappointing but also somewhat expected since the AHOT-N0

spatial weights are easily shown to limit to the Step method weights for increasingly

optically thick cells such that in the thick diffusive regime it should be expected

the AHOT-N0 and Step discretizations behave similarly. With the failure of this

nodal method we now ask whether AHOT-N1 will fail to have the thick diffusion

limit as well. This analysis will be carried out in the following section. Numerical

results will then be given in Section 3.4 to support the predictions made by both

analyses.

3.3 AHOT-N1 Thick Limit Analysis

The AHOT-N1 method is fundamentally different from the Diamond Difference,

Step, and AHOT-N0 methods because it utilizes a linear in-cell representation of

the scattering source, as well as the angular and scalar fluxes. However, AHOT-

N1 is not unique among discretization schemes in this sense. Larsen and Morel

[11] have previously analyzed the Linear Discontinuous (LD) and Linear Moments

discretization methods which also use linear functions within the spatial cell. The

Linear Moments method itself is a one dimensional version of the Linear-Linear

Nodal Method which in one dimension is equivalent to the AHOT-N1 method.

Larsen and Morel state that the Linear Moments analysis is identical to the LD

analysis, so the claim can be made that results drawn by Larsen and Morel for the

LD method also hold true for the AHOT-N1 method. Although the equations are

not identical, just as AHOT-N0 was not identical to the Step method, they are

asymptotically equivalent up to O(ε) and so the asymptotic limit which describes

the LD method also describes the AHOT-N1 method.

Larsen and Morel show that the LD method does limit to a legitimate diffu-
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sion discretization for both cell average and cell edge fluxes. Their analysis also

shows that unlike Diamond Difference the LD boundary conditions asymptotically

approach the correct diffusion boundary conditions. This means that even in the

presence of unresolved boundary layers the LD method will still unconditionally

limit to a diffusion discretization in the thick regime. Interestingly Larsen and

Morel find that by introducing a free parameter, θ, into the LD equations they

can force the method to limit to a “more desirable” diffusion discretization in the

thick regime. Problem 2 of Section 2.4.3 is considered using the LD method and it

is shown that the results are far superior to the Diamond Difference results. The

analysis performed by Larsen and Morel and the numerical experiments will be

duplicated here with regards to the AHOT-N1 method.

The boundary condition analysis will not be included here for the sake of

brevity, instead only the results will be discussed. See [11] and its corrigendum

for this portion of the analysis. The AHOT-N1 method is now rewritten here to

include Larsen and Morel’s free parameter θ and in the spirit of consistency with

previous notation the first moment of the flux will be represented by ψ̂n,i while the

zeroth moment of the flux will be denoted by ψn,i. Thus the AHOT-N1 method

without boundary conditions, which has also been scaled by the asymptotic pa-

rameter ε per Eqs. (2.33) is given by

µn
hi

(
ψn,i+1/2 − ψn,i−1/2

)
+
σt,i
ε
ψn,i =

(σt,i
ε
− εσa,i

) M∑
m=1

wmψm,i + εQi, (3.13a)

µn
θhi

(
ψn,i+1/2 − 2ψn,i + ψn,i−1/2

)
+
σt,i
ε
ψ̂n,i =

(σt,i
ε
− εσa,i

) M∑
m=1

wmψ̂m,i + εQ̂i,

(3.13b)(
1 + αn,i

2

)
ψn,i+1/2 +

(
1− αn,i

2

)
ψn,i−1/2 = ψn,i + αn,iψ̂n,i, (3.13c)

αn,i =

[
coth

(
δn,i

ε

)
− ε

δn,i

]
[
1− 3ε

δn,i

(
coth

(
δn,i

ε

)
− ε

δn,i

)]
.

(3.13d)

The δn,i found in the AHOT-N1 spatial weights is defined by Eq. (2.14). We

can also see when comparing Eq. (3.13b) to Eq. (2.15) that θ = 1/3 corresponds
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to the AHOT-N1 discretization described in Chapter 2.

As with the AHOT-N0 method it is also necessary to expand the AHOT-N1

spatial weights. Inspection of Eq. (3.13d) shows that as with the AHOT-N0

spatial weights, the AHOT-N1 spatial weights are odd functions of δn,i, or more

specifically odd functions of µn, thus we can make the replacement, δn,i → |δn,i|.
We also recognize that the AHOT-N0 spatial weights themselves show up in both

the numerator and denominator of Eq. (3.13d) so that we can use the previous

expansion of the AHOT-N0 weights to rewrite this equation as ε→ 0 as

αn,i = ±

[
1− ε

|δn,i| +������
O(e−

2|δn,i|
ε )
]

[
1− 3ε

|δn,i|

(
1− ε

|δn,i| +������
O(e−

2|δn,i|
ε )
)] .

Here the exponential terms have been removed since they approach 0 much

quicker than any polynomial. The remaining terms are now expanded as

αn,i = ±

[
1− ε

|δn,i|

]
[
1− 3ε

|δn,i|

(
1− ε

|δn,i|

)] ≈ ±
(

1− ε

|δn,i|

)(
1 +

3ε

|δn,i|
+O (ε)2

)
.

The final asymptotic expression for the AHOT-N1 spatial weights is then given

by

αn,i = ±
(

1 +
2ε

|δn,i|

)
+O (ε)2 . (3.14)

After successfully expanding the spatial weights the asymptotic expansion of

Eq. (2.53) is introduced for the zeroth and first moment cell average and for the

cell edge fluxes. The coefficients of the ε−1, ε0, and ε1 terms can now be equated

and the system of equations solved as in previous analyses.

There are now two O(ε−1) contributions, resulting from Eqs. (3.13a) and

(3.13b) and given by

σt,i

(
ψ

(0)
n,i −

M∑
m=1

wmψ
(0)
m,i

)
= 0, (3.15a)
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σt,i

(
ψ̂

(0)
n,i −

M∑
m=1

wmψ̂
(0)
m,i

)
= 0. (3.15b)

As before the solutions of these equations are isotropic quantities, where φ̂ has

been used to represent the first moment of the scalar flux.

ψ
(0)
n,i = φ

(0)
i (3.16a)

ψ̂
(0)
n,i = φ̂

(0)
i (3.16b)

Each of the AHOT-N1 equations contributes at O(1) and when substituting in

Eqs. (3.16) the resulting equations are given by

σt,i

(
ψ

(1)
n,i −

M∑
m=1

wmψ
(1)
m,i

)
= −µn

hi

(
ψ

(0)
n,i+1/2 − ψ

(0)
n,i−1/2

)
, (3.17a)

σt,i

(
ψ̂

(1)
n,i −

M∑
m=1

wmψ̂
(1)
m,i

)
= − µn

θhi

(
ψ

(0)
n,i+1/2 − 2ψ

(0)
n,i + ψ

(0)
n,i−1/2

)
, (3.17b)

ψ
(0)
n,i+1/2 =

{
φ

(0)
i + φ̂

(0)
i , 1 ≤ i ≤ I, µn > 0

φ
(0)
i+1 − φ̂

(0)
i+1, 0 ≤ i ≤ I − 1, µn < 0.

(3.17c)

Substituting Eq. (3.16a) into Eq. (3.17b) and taking the zeroth angular mo-

ment of Eqs. (3.17a) and (3.17b), while keeping in mind the quadrature rules of

Eq. (2.3) yields the following two solvability conditions,

M∑
n=1

wnµnψ
(0)
n,i+1/2 −

M∑
n=1

wnµnψ
(0)
n,i−1/2 = 0,

M∑
n=1

wnµnψ
(0)
n,i+1/2 +

M∑
n=1

wnµnψ
(0)
n,i−1/2 = 0,

which imply the following condition must hold if a solution to Eqs. (3.17) is to

exist:

M∑
n=1

wnµnψ
(0)
n,i+1/2 = 0. (3.18)

By substituting Eq. (3.17c) into the condition given by Eq. (3.18), and impos-
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ing continuity of the angular flux across the cell edge at xi+1/2, separating cells i

and i+ 1, it is then seen that

φ
(0)
i + φ̂

(0)
i = φ

(0)
i+1 − φ̂

(0)
i+1, 1 ≤ i ≤ I − 1. (3.19)

We then take the zeroth angular moment of Eq. (3.17c), resulting in

φ
(0)
i+1/2 ≡ φ

(0)
i + φ̂

(0)
i = φ

(0)
i+1 − φ̂

(0)
i+1, (3.20)

thus implying

φ
(0)
i =

1

2

(
φ

(0)
i+1/2 + φ

(0)
i−1/2

)
, 1 ≤ i ≤ I, (3.21a)

φ̂
(0)
i =

1

2

(
φ

(0)
i+1/2 − φ

(0)
i−1/2

)
, 1 ≤ i ≤ I. (3.21b)

Using the expressions in Eqs. (3.21), Eq. (3.17c) can now be written as

ψ
(0)
n,i+1/2 = φ

(0)
i+1/2, i ∈

1 ≤ i ≤ I, µn > 0

0 ≤ i ≤ I − 1, µn < 0.
(3.22)

Assuming the condition given in Eq. (3.18) holds, a general solution to Eq.

(3.17a) is given by

ψ
(1)
n,i = − µn

σt,ihi

(
φ

(0)
i+1/2 − φ

(0)
i−1/2

)
+ φ

(1)
i , 1 ≤ i ≤ I, (3.23)

where the angular edge fluxes have been replaced using the relation given in Eq.

(3.22). The unknown quantity, φ
(1)
i , can be “integrated” out by taking the first

angular moment of Eq. (3.23), resulting in

ϑ
(1)
i = − 1

3σt,ihi

(
φ

(0)
i+1/2 − φ

(0)
i−1/2

)
, (3.24)

where ϑ is the first angular moment of the flux as defined by Eq. (2.61b).

It still remains to find an expression to represent the unknown quantity φ
(0)
i+1/2.

To do so it is necessary to consider the O(ε) components of both the zeroth and

first moment balance equation. The expressions resulting from these contributions

are
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σt,i

(
ψ

(2)
n,i −

M∑
m=1

wmψ
(2)
m,i

)
= −µn

hi

(
ψ

(1)
n,i+1/2 − ψ

(1)
n,i−1/2

)
− σa,iφ

(0)
i +Qi, (3.25a)

σt,i

(
ψ̂

(2)
n,i −

M∑
m=1

wmψ̂
(2)
m,i

)
= − µn

θhi

(
ψ

(1)
n,i+1/2 − 2ψ

(1)
n,i + ψ

(1)
n,i−1/2

)
− σa,iφ̂

(0)
i + Q̂i.

(3.25b)

Taking the zeroth angular moment of Eq. (3.25a) and adding the resulting

expression for the ith cell to that for the (i+ 1)th cell yields

(
ϑ

(1)
i+3/2 − ϑ

(1)
i−1/2

)
= −hiσa,iφ(0)

i + hiQi − hi+1σa,i+1φ
(0)
i+1 + hi+1Qi+1. (3.26)

Taking the zeroth angular moment of Eq. (3.25b) and subtracting the resulting

expression for the ith cell to that for the (i+ 1)th cell results in

(
ϑ

(1)
i+3/2 − ϑ

(1)
i−1/2

)
= 2

(
ϑ

(1)
i+1 − ϑ

(1)
i

)
+ hiσa,iθφ

(0)
i − hiθQi

− hi+1σa,i+1θφ
(0)
i+1 + hi+1θQi+1. (3.27)

Equations (3.26) and (3.27) can now be equated and then combined with Eq.

(3.24) to yield

− 1

3σt,i+1hi+1

(
φ

(0)
i+3/2 − φ

(0)
i+1/2

)
+

1

3σt,ihi

(
φ

(0)
i+1/2 − φ

(0)
i−1/2

)
+

1

4

(
hiσa,i

(
(1− θ)φ

(0)
i−1/2 + (1 + θ)φ

(0)
i+1/2

)
+hi+1σa,i+1

(
(1 + θ)φ

(0)
i+1/2 + (1− θ)φ

(0)
i+3/2

))
=

1

2

(
hi+1

(
Qi+1 − θQ̂i+1

)
+ hi

(
Qi − θQ̂i

))
, 1 ≤ i ≤ I (3.28)

after further algebraic simplification. Eq. (3.28) is an expression solely in terms of

the unknown φ
(0)
i+1/2.
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This equation is a legitimate discretization in an edge-based diffusion equation,

giving AHOT-N1 the thick diffusion limit. Larsen and Morel [11] also show that

the boundary conditions of the linear method are excellent approximations to the

boundary conditions given by Eqs. (2.88). Thus, it can be expected that the

AHOT-N1 method will provide accurate solutions using optically thick cells, even

in the presence of unresolved boundary layers.

Equation (3.28) also shows the benefit of including the θ parameter in the

first moment balance equation. If θ is given the actual value of 1/3, or more

generally any value not equal to 1, then the resulting expression contains a three-

point absorption scheme. Larsen and Morel observe that using a θ value of 1 will

collapse this three-point removal term to a more standard one-point removal term,

which they state results in a more robust discretization.

The effect of the θ parameter becomes more obvious if we look at Eq. (3.28) for

a homogeneous medium with a piecewise constant fixed source (so that Q̂i = 0).

For θ = 1/3 the expression simplifies to

−
(

1

3σth2
− σa

6

)(
φ

(0)
i−1/2 − 2φ

(0)
i+1/2 + φ

(0)
i+3/2

)
+ σaφ

(0)
i+1/2 = Qi, (3.29)

while for θ = 1 we obtain

− 1

3σth2

(
φ

(0)
i−1/2 − 2φ

(0)
i+1/2 + φ

(0)
i+3/2

)
+ σaφ

(0)
i+1/2 = Qi. (3.30)

We can see that for the case where θ = 1/3 there is an unexpected absorption

term in the diffusion coefficient. In fact for sufficiently large absorption or mesh

size, h, we can see that there is even the possibility of the diffusion coefficient

taking on an unphysical negative value. Specifically if h >
√

6L then the effective

diffusion coefficient will become negative. Here L is the diffusion length, given by

Eq (2.34). However this instability is not present in Eq. (3.30), where θ = 1, the

value which Larsen and Morel highly recommend in thick diffusive regimes.

Regardless of the value of θ, AHOT-N1 does have the thick diffusion limit for

cell edge and cell average fluxes. This can be formally shown by recognizing that

φ
(0)
i+1/2 satisfies the legitimate diffusion discretization given by Eq. (3.28) and using

Eqs. (3.22), Eq. (3.21a), and Eq. (3.16a) to formulate the relations
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Table 3.1. AHOT-N0 and AHOT-N1 Asymptotic Limits

Thick
Edge Average

AHOT-N0 maybe maybe
AHOT-N1 yes yes

ψ
(0)
n,i =

1

2

(
φ

(0)
i+1/2 + φ

(0)
i−1/2

)
+O(ε), (3.31a)

ψ
(0)
n,i+1/2 = φ

(0)
i+1/2 +O(ε). (3.31b)

The AHOT-N0 and AHOT-N1 results are summarized in Table 3.1. The maybes

in the AHOT-N0 columns indicate that this discretization possesses the thick dif-

fusion limit only under the same restrictive conditions as the Step method. The

AHOT-N1 method possesses the thick limit for both edge and average fluxes with-

out any conditions imposed regarding fluxes incident on the system, unlike the

previous Diamond Difference results. The analytical conclusions for these low or-

der nodal methods are tested using the previously described numerical experiments

in the following section.

3.4 Numerical Results

The predictions made from the asymptotic analyses of the AHOT-N0 and AHOT-

N1 methods were tested using the previously defined numerical experiments. The

AHOT-N0 method was used for the homogeneous experiment, Problem 1. The

AHOT-N0 average and edge scalar fluxes are displayed in Fig. 3.1. These results

confirm the analytical predictions. It is easily seen that the AHOT-N0 method is

quite inaccurate in thick diffusive media. The results are nearly identical to the

results generated by the Step method for the same problem. However, the results

are not identical, but instead slightly differ. This is also to be expected since the

methods are only the same in the asymptotic limit. Since ε is not equal to 0 the

difference between the solutions will be at most O(ε).

Interestingly if we consider the AHOT-N0 method, and the Step method as
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Figure 3.1. Problem 1: AHOT-N0 Cell Average and Edge Scalar Fluxes

well, for the two-region heterogeneous slab described in Chapter 2 we see much

different results. The AHOT-N0, Step, and DD cell average and cell edge scalar

fluxes are plotted along with the same reference solution used previously, in Figures

3.2 and 3.3 respectively. Since the AHOT-N0 and Step methods do not display

the oscillatory behavior that DD does, only the case where N=10 was plotted as

there is nothing to gain by plotting the case where N=11. We do see that for this

problem the AHOT-N0 and Step methods perform nearly identically and much

better than DD! This may seem like it contradicts the results of the asymptotic

analysis, but instead it actually supports the conclusions. We know that the left

half of the slab, the source region, has an external source and absorption cross

section sufficiently large that the asymptotic analysis is not strictly applicable in

this region. Lewis and Miller [4] have also shown that for h values sufficiently

large the DD method can be expected to actually provide less accurate solutions

than the Step method, thus in this region which is dominated by local balance,

the AHOT-N0 and Step methods perform well.

Since AHOT-N0 and Step do not oscillate like the DD method, they reach

the material interface at nearly the correct solution. The right half of the slab
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Figure 3.2. Problem 2: AHOT-N0 Cell Average Scalar Fluxes

is certainly in the thick diffusion limit and so we would generally expect that

AHOT-N0 and Step would perform poorly. However the right half of the slab

meets the restrictive conditions under which the AHOT0-N0 and Step methods

possess the thick diffusion limit since σa = Q = 0 and (σth) is constant throughout

the material. So in fact, we should expect these methods to perform well in this

leakage dominated region. The same reasoning can be used to explain the cell edge

scalar flux results for the AHOT-N0 and Step methods as well.

Figure 3.4 shows the average and edge scalar fluxes generated using the AHOT-

N1 method for Problem 2, the heterogeneous slab. The AHOT-N1 results are

quite accurate for this problem and do not display any of the gross inaccuracies

which characterized the Diamond Difference method. There are slight inaccuracies

displayed by the AHOT-N1 method near the boundary in the absorbing portion

of the slab, however as Larsen and Morel note, the magnitude of the absorption in

this reason is large enough so that this region cannot be considered an optically

thick, diffusive region.

These figures show that numerical solutions from both nodal methods agree

with the analytical predictions made. This further supports the original thesis of
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Figure 3.3. Problem 2: AHOT-N0 Cell Edge Scalar Fluxes
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Figure 3.4. Problem 2: AHOT-N1 Cell Average and Edge Scalar Fluxes
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Larsen, Morel, and Miller [10] that discretizations possessing the thick diffusion

limit can be expected to generate accurate solutions in optically thick, diffusive

regimes. Though the AHOT-N1 method shows itself to be superior in this limit to

the Step, Diamond Difference, and AHOT-N0 methods, this increase in accuracy

comes at the cost of requiring larger storage. This leads to the question of whether

it is possible to derive a discretization scheme requiring only one unknown per cell

(e.g. Step, Diamond Difference, and AHOT-N0) while possessing the accuracy of

AHOT-N1 in the thick diffusion limit. This question was addressed by Hanshaw

and Larsen in a 2003 paper [35].

Explicit Slope SN Discretization Method

The Explicit Slope (ES) discretization was derived by Hanshaw and Larsen [35]

with the intention of finding a discretization which would have the accuracy of a

linear method in the thick limit but require the storage of only one fundamental

unknown. To accomplish this goal Hanshaw and Larsen represent the scattering

source as a linear function in space but explicitly approximate the slope of the

linear function in terms of the cell average scalar flux. This reduces the number of

unknowns to put the method on par with Step and Diamond Difference.

A full derivation of the method can be found in [35]. The method itself however

is characterized by the auxiliary relation below.

ψn,i =

(
1 + αn,i

2

)
ψn,i+1/2 +

(
1− αn,i

2

)
ψn,i−1/2 −

αn,i
4σt,i

(
σs,iφ̂n,i + Q̂i

)
(3.32)

In this relation αn,i represents the spatial weights used by AHOT-N0, given by

Eq. (3.1c). The quantities φ̂n,i and Q̂i represent “slopes.” These are explicitly

defined by Hanshaw and Larsen through

φ̂n,i = φ̂±,i =


2σt,ihi

σt,ihi+σt,i+1hi+1
(φi+1 − φi) , µn > 0

2σt,ihi

σt,ihi+σt,i−1hi−1
(φi − φi−1) , µn < 0.

(3.33)

This representation of the slope results from imposing the condition that the

discrete net current across cell boundaries be continuous.
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Performing the same asymptotic analysis we have seen many times to this point

on the ES method yields a legitimate diffusion discretization. In this case however

the diffusion discretization has no multiple-cell removal schemes or conditional

requirements. The diffusion discretization is in fact the standard cell-centered

diffusion discretization given by Eq. (2.26), which was fully derived in Section 2.2.

Hanshaw and Larsen present numerical results which confirm that the ES method is

accurate in diffusive regimes. They also impose what they term a “slope limiter” to

force the method to perform adequately at material interfaces where the explicitly

defined slope of Eq. (3.33) can be quite inaccurate.

This is the first method which has been examined that asymptotically limits to

a cell-centered based diffusion discretization, along the lines of what was derived in

Section 2.2. This is a desirable diffusion discretization because it can be physically

interpreted as a balance of neutrons across the spatial cell, while an edge based

discretization does not lend itself to this idea easily. The remainder of this work

revisits the Diamond Difference method but approaches the asymptotic analysis

with the intent of deriving the ε limit in terms of cell average scalar fluxes and

thus ending up with a variant of the cell-centered based diffusion discretization.

This derivation leads to many interesting results and allows for a further analysis

of the inadequacies of Diamond Difference in the thick diffusion limit.



CHAPTER

FOUR

Asymptotic Analysis of the Diamond

Difference Method

Our asymptotic analysis of the DD method will use the scalings described by Eqs.

(2.33) and the quadrature rules given by Eq. (2.3). To begin our analysis of the

DD method we consider the same problem described in Section 2.4.2, which for

the indicated quadrature set is described by

µn
hi

(
ψn,i+1/2 − ψn,i−1/2

)
+
σt,i
ε
ψn,i = (

σt,i
ε
− εσa,i)

N∑
m=1

wmψm,i + εQi, (4.1a)

ψn,i =
1

2

(
ψn,i+1/2 + ψn,i−1/2

)
, (4.1b)

ψn,1/2 = fn, µn > 0, (4.1c)

ψn,I+1/2 = gn, µn < 0. (4.1d)

At this point we will only consider the system interior, and return to the bound-

ary conditions at a later point. Again using the asymptotic expansion of Eq. (2.53)

to expand the cell edge and cell average angular fluxes in a power series about ε we

can equate the coefficients of different powers of ε to obtain the following system

of equations,
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σt,i

(
ψ

(k)
n,i −

N∑
m=1

wmψ
(k)
m,i

)
= −µn

hi

(
ψ

(k−1)
n,i+1/2 − ψ

(k−1)
n,i−1/2

)
− σa,i

N∑
m=1

wmψ
(k−2)
m,i + δk,2Qi, k ≥ 0, (4.2a)

ψ
(k)
n,i =

1

2

(
ψ

(k)
n,i+1/2 + ψ

(k)
n,i−1/2

)
, k ≥ 0, (4.2b)

with the quantities ψ(−1) and ψ(−2) being equal to zero.

We first consider Eq. (4.2a) for k = 0. As in previous analyses this relation

shows that the leading order component of the cell average angular flux is isotropic,

where the quantity φ(0) is still undetermined at this point.

ψ
(0)
n,i = φ

(0)
i (4.3)

We proceed by considering the DD relation for k = 0. Replacing ψ
(0)
n,i with φ

(0)
i

and taking the second angular moment of the resulting equation yields

1

3
φ

(0)
i =

1

2

(
ν

(0)
i+1/2 + ν

(0)
i−1/2

)
. (4.4)

If we now proceed to the case of k = 2 and take the zeroth angular moment of

Eq. (4.2a) the following relation results,

− 1

hi

(
ϑ

(1)
i+1/2 − ϑ

(1)
i−1/2

)
− σa,iφ

(0)
i +Qi = 0. (4.5)

At this point our system of equations contains two equations and five unknowns:

two unknown first angular moment edge quantities, two second angular moment

edge quantities, and the cell average scalar flux. Another relationship can be

developed in terms of the previous unknowns by using both the DD and balance

equations for k = 1 to eliminate the quantity ψ
(1)
n,i . Taking the first angular moment

of the resulting expression yields

1

2

(
ϑ

(1)
i+1/2 + ϑ

(1)
i−1/2

)
= − 1

τi

(
ν

(0)
i+1/2 − ν

(0)
i−1/2

)
, (4.6)

where the cell optical thickness, τi is given by
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τi = σt,ihi. (4.7)

This linear system is now comprised of three relations with five unknowns. To

eliminate the first and second angular moment quantities it is necessary to consider

adjacent spatial cells. Below we write the three equation system for cells i − 1,

i, and i + 1, creating a system of nine equations, which utilizes the continuity

of the angular flux and its angular moments at a cell interface. This algebraic

system contains 11 unknown quantities and 9 equations and can be reduced to

only one equation containing the three unknown cell average scalar flux quantities

through subsequent manipulation. The system follows in its entirety to make the

elimination steps as clear as possible and so certain expressions can be later used

to assist in the derivation of boundary conditions in terms of cell average scalar

fluxes.

− 1

hi−1

(
ϑ

(1)
i−1/2 − ϑ

(1)
i−3/2

)
− σa,i−1φ

(0)
i−1 +Qi−1 = 0 (4.8a)

1

3
φ

(0)
i−1 =

1

2

(
ν

(0)
i−1/2 + ν

(0)
i−3/2

)
(4.8b)

1

2

(
ϑ

(1)
i−1/2 + ϑ

(1)
i−3/2

)
= − 1

τi−1

(
ν

(0)
i−1/2 − ν

(0)
i−3/2

)
(4.8c)

− 1

hi

(
ϑ

(1)
i+1/2 − ϑ

(1)
i−1/2

)
− σa,iφ

(0)
i +Qi = 0 (4.9a)

1

3
φ

(0)
i =

1

2

(
ν

(0)
i+1/2 + ν

(0)
i−1/2

)
(4.9b)

1

2

(
ϑ

(1)
i+1/2 + ϑ

(1)
i−1/2

)
= − 1

τi

(
ν

(0)
i+1/2 − ν

(0)
i−1/2

)
(4.9c)

− 1

hi+1

(
ϑ

(1)
i+3/2 − ϑ

(1)
i+1/2

)
− σa,i+1φ

(0)
i+1 +Qi+1 = 0 (4.10a)

1

3
φ

(0)
i+1 =

1

2

(
ν

(0)
i+3/2 + ν

(0)
i+1/2

)
(4.10b)
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1

2

(
ϑ

(1)
i+3/2 + ϑ

(1)
i+1/2

)
= − 1

τi+1

(
ν

(0)
i+3/2 − ν

(0)
i+1/2

)
(4.10c)

We choose to begin by eliminating the second angular moment quantities, ν(0).

This is accomplished by summing Eqs. (4.8b) and (4.8c) and taking the difference

of Eqs. (4.10b) and (4.10c), then eliminating the second angular moment quantities

on the outer edges of the three-cell system, which results in explicit expressions

for ν
(0)
i−1/2 and ν

(0)
i+1/2, respectively. By taking the sum and the difference of Eqs.

(4.9b) and (4.9c) we can also find two explicit expressions for ν
(0)
i−1/2 and ν

(0)
i+1/2.

Equating these four expressions completely eliminates the second angular moment

quantities and leaves us a system of five equations comprised of

1

3
φ

(0)
i−1 −

τi−1

4

(
ϑ

(1)
i−1/2 + ϑ

(1)
i−3/2

)
=

1

3
φ

(0)
i +

τi
4

(
ϑ

(1)
i+1/2 + ϑ

(1)
i−1/2

)
, (4.11a)

1

3
φ

(0)
i+1 −

τi+1

4

(
ϑ

(1)
i+3/2 + ϑ

(1)
i+1/2

)
=

1

3
φ

(0)
i − τi

4

(
ϑ

(1)
i+1/2 + ϑ

(1)
i−1/2

)
, (4.11b)

and Eqs. (4.8a), (4.9a), and (4.10a). We now reduce this system to three equations

by solving Eqs. (4.8a) and (4.10a) for the quantities ϑ
(1)
i−3/2 and ϑ

(1)
i+3/2 respectively

and using the result to eliminate the quantities in Eqs. (4.11a) and (4.11b). The

system has now been reduced to three equations, given by

1

3
φ

(0)
i−1 −

τi−1

4

(
ϑ

(1)
i−1/2 + hi−1σa,i−1φ

(0)
i−1 − hi−1Qi−1

)
=

1

3
φ

(0)
i +

τi
4

(
ϑ

(1)
i+1/2 + ϑ

(1)
i−1/2

)
, (4.12a)

1

3
φ

(0)
i+1 −

τi+1

4

(
ϑ

(1)
i+1/2 + hi+1σa,i+1φ

(0)
i+1 − hi+1Qi+1

)
=

1

3
φ

(0)
i − τi

4

(
ϑ

(1)
i+1/2 + ϑ

(1)
i−1/2

)
, (4.12b)

and Eq. (4.9a). The remaining unknown quantities are the three cell average

φ(0)’s and the two first angular moment quantities ϑ
(1)
i−1/2 and ϑ

(1)
i+1/2. The two

first angular moment quantities can then be eliminated from the system of three
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equations resulting in one expression containing only the unknown φ(0) quantities.

By utilizing the shorthand notation of Eq. (2.27) and the definition of ξ provided

below the previously undetermined quantity φ(0) is now determined by,

− ai,i−1

[
1− 3

4

(
(hσa)i−1 τi−1

)]
φ

(0)
i−1

+

[
ai,i−1

(
1− 3

4
((hσa)i τi−1)

)
+ ai,i+1

(
1− 3

4
((hσa)i τi+1)

)]
φ

(0)
i

− ai,i+1

[
1− 3

4

(
(hσa)i+1 τi+1

)]
φ

(0)
i+1 + (ξi−1 + ξi+1)σa,iφ

(0)
i

=
1

2hi

(
(hQ)i−1 ξi−1 + (hQ)i (ξi−1 + ξi+1) + (hQ)i+1 ξi+1

)
, 1 ≤ 1 ≤ I, (4.13)

ξi±1 =
τi±1

τi±1 + τi
. (4.14)

The notation (hQ)i is used as shorthand to signify the product hiQi and likewise

for (hσa)i. We can see that Eq. (4.13) is a legitimate discretization of the diffusion

equation, but it is also easy to see that it may not be the most ideal diffusion

discretization. While this expression does resemble Eq. (2.26) there are many

notable differences, which will be discussed in detail once this analysis has been

completed.

We now turn our attention to analyzing the system boundaries in the asymp-

totic diffusion limit. As discussed previously, in the asymptotic limit we hope that

the boundary conditions resemble the diffusion boundary conditions described by

Eqs. (2.88). To start we wish to find an explicit expression for the outgoing an-

gular flux at cells 1 and I so that the edge flux at x1/2 and xI+1/2 can be written

as the sum of the outgoing flux and the known incident fluxes fn and gn. One

manner in which the outgoing flux can be written for the DD method is to use the

expressions

ψoutn,1/2 =
I∑
i=1

vn,i

(
c̃iφi +

Q̃i

σ̃t,i

)
+ vn,ngn, (4.15a)
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ψoutn,I+1/2 =
I∑
i=1

wn,i

(
c̃iφi +

Q̃i

σ̃t,i

)
+ wn,nfn, (4.15b)

which can be derived by considering the neutron balance in a one dimensional slab

in terms of multiple discrete cell balance equations. The parameters v and w used

in the outgoing angular flux expression are defined for the DD method by

vn,1 =

(
2

1 + 2κ̃n,i

)
, (4.16a)

wn,I =

(
2

1 + 2κ̃n,I

)
, (4.16b)

vn,n = wn,n =
I∏
i=1

(
2κ̃n,i − 1

2κ̃n,i + 1

)
, (4.17)

vn,i =

(
2

1 + 2κ̃n,i

) i−1∏
j=1

(
2κ̃n,j − 1

2κ̃n,j + 1

)
, 2 ≤ i ≤ I, (4.18a)

wn,i =

(
2

1 + 2κ̃n,i

) I∏
j=i+1

(
2κ̃n,j − 1

2κ̃n,j + 1

)
, 1 ≤ i ≤ I − 1, (4.18b)

κ̃n,i =
|µn|
σ̃t,ihi

. (4.19)

We now wish to expand this expression into components of varying orders of

ε. This is achieved through the same means used in previous analyses, expanding

the angular flux in a power series using the asymptotic expansion of Eq. (2.53)

which in turn implies the scalar flux can be expanded in a similar series. We will

also scale σ̃t,i and Q̃i as described by Eq. (2.33), which implies that the scattering

ratio, c, is scaled like,

c̃i → 1− ε2(1− ci).

It is also necessary to expand the parameters v and w in Taylor series in the

asymptotic variable ε. We first scale the total cross section in the κ̃n,i parameter

in the now standard manner so that under this scaling we can replace κ̃n,i with

εκn,i where
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κn,i =
|µn|
σt,ihi

,

is now independent of ε. We can easily expand the two factors which appear in

the v and w definitions as

2

1 + 2εκn,i
= 2 +O(ε), (4.20a)

2εκn,i − 1

2εκn,i + 1
= −1 +O(ε). (4.20b)

By substituting the above expansions into the definitions of v and w we find

that the parameters are asymptotically defined by

vn,1 = 2 +O(ε), (4.21a)

wn,I = 2 +O(ε), (4.21b)

vn,n = wn,n = (−1)I +O(ε), (4.22)

vn,i =

−2 +O(ε), i = odd

2 +O(ε), i = even
2 ≤ i ≤ I, (4.23a)

wn,i =

−2(−1)I +O(ε), i = odd

2(−1)I +O(ε), i = even
1 ≤ i ≤ I − 1. (4.23b)

If we now take the expanded v and w parameters, the scaled external source,

scattering ratio, and total cross section, as well as the expanded angular and scalar

fluxes and substitute them into Eqs. (4.15) we find the expressions for the outgoing

angular flux at the system edges in the asymptotic diffusion limit given by

ψoutn,1/2 = 2
(
φ̄1→I

)
+ (−1)Ign +O(ε), (4.24a)

ψoutn,I+1/2 = 2(−1)I+1
(
φ̄1→I

)
+ (−1)Ifn +O(ε), (4.24b)

where we have defined the quantity
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φ̄1→I ≡
(
φ

(0)
1 − φ

(0)
2 + φ

(0)
3 − φ

(0)
4 + . . .+ (−1)I+1φ

(0)
I

)
. (4.25)

We now have an explicit expression for the outgoing angular flux in terms of the

known incident flux at the system boundary and the interior scalar fluxes defined

by Eq. (4.13). We will now replace the φ̄1→I expression using a relationship we

derive from the recursive system of equations given by Eqs. (4.2).

We begin by taking the first angular moment of Eq. (4.2a) for k = 0 which

trivially shows that ϑ
(0)
i = 0. If we subsequently take the first angular moment

of Eq. (4.2b) for k = 1 and substitute the previous result we find that ϑ
(0)
i+1/2 =

−ϑ(0)
i−1/2. However, when we take the zeroth angular moment of Eq. (4.2a) for

k = 1 we find that ϑ
(0)
i+1/2 = ϑ

(0)
i−1/2, implying

ϑ
(0)
i+1/2 = ϑ

(0)
i−1/2 = 0 (4.26)

We now write an expression for ϑ
(0)
i+1/2, recognizing that it is equal to zero, and

separately consider the incoming and outgoing flux at the cell face, yielding,

ϑ
(0)
1/2 =

∑
µn>0

wn|µn|fn −
∑
µn<0

wn|µn|ψoutn,1/2 = 0, (4.27)

where fn is the known incident angular flux. We now substitute the expression

given by Eq. (4.24a) and extract all isotropic quantities from the summations,

resulting in

∑
µn>0

wn|µn|fn − 2γ
(
φ̄1→I

)
− (−1)I

∑
µn<0

wn|µn|gn = 0, (4.28)

where γ is again defined by Eq. (2.79), such that φ̄1→I is given by

φ̄1→I =
1

2γ

(∑
µn>0

wn|µn|fn − (−1)I
∑
µn<0

wn|µn|gn

)
. (4.29)

We can now use this relation to replace φ̄1→I in the outgoing angular flux

expressions, resulting in
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ψoutn,1/2 =
1

γ

(∑
µn>0

wn|µn|fn − (−1)I
∑
µn<0

wn|µn|gn

)
+ (−1)Ign +O(ε), (4.30a)

ψoutn,I+1/2 =
1

γ

(∑
µn<0

wn|µn|gn − (−1)I
∑
µn>0

wn|µn|fn

)
+ (−1)Ifn +O(ε). (4.30b)

Although this provides us with an expression for the outgoing angular flux

solely in terms of the flux incident on the system it still does not provide us with a

relation which will allow us to determine the values of φ
(0)
i . To find such a relation

we begin by writing ν
(0)
1/2 in the same manner in which we previously wrote ϑ

(0)
1/2,

that is

ν
(0)
1/2 =

∑
µn>0

wnµ
2
nfn +

∑
µn<0

wnµ
2
nψ

out
n,1/2. (4.31)

If we now introduce Eq. (4.30a) into the above relation we can write ν
(0)
1/2 as

shown below, where we have also shown the analogous expression for ν
(0)
I+1/2.

ν
(0)
1/2 =

∑
µn>0

(
µn
6γ

+ µ2
n

)
fnwn + (−1)I

∑
µn<0

(
−|µn|

6γ
+ µ2

n

)
gnwn. (4.32a)

ν
(0)
I+1/2 =

∑
µn<0

(
|µn|
6γ

+ µ2
n

)
gnwn + (−1)I

∑
µn>0

(
−µn

6γ
+ µ2

n

)
fnwn. (4.32b)

These equations are identical to the previously derived asymptotic boundary

conditions for the DD method. Thus we can expect the same conclusions drawn

regarding their accuracy to hold for this system. More specifically, for Eqs. (4.32)

to closely resemble the appropriate boundary condition in Eq. (2.90) it must again

be true that

0 =
∑
µn>0

(
−µn

6γ
+ µ2

n

)
fnwn =

∑
µn<0

(
−|µn|

6γ
+ µ2

n

)
gnwn. (4.33)

We recognize that generally this condition is not true, although under certain

instances such as isotropic incident fluxes, the condition is satisfied. As in the scalar
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edge flux based DD analysis, vacuum conditions at the slab edges will result in

asymptotic boundary conditions that agree well with the correct diffusion boundary

conditions.

We are now in possession of an expression that describes the second angular

moment of the angular flux at the slab interface. However we need to relate this

quantity to φ(0) in order to allow the algebraic system defined by Eq. (4.13)

to be fully solved. To find the remaining relations we return to the 9 equation

system given by Eqs. (4.8) – (4.10). Through a substantial amount of algebraic

manipulation, which will not be repeated here, we are able to condense the system

down to two expressions containing two adjacent cell average scalar flux values, φ
(0)
i−1

and φ
(0)
i , and the second moment edge quantity ν

(0)
i+1/2 or ν

(0)
i−1/2. We then consider

the expression for ν
(0)
i+1/2 specifically for the value of i = I and the expression for

ν
(0)
i−1/2 specifically for i = 1, yielding

ν
(0)
1/2 =

(8τ1 + 4τ2 + 3 (hσa)1 τ1τ2)

12 (τ1 + τ2)
φ

(0)
1

+
(−4τ1 + 3 (hσa)2 τ1τ2)

12 (τ1 + τ2)
− τ1τ2

4 (τ1 + τ2)
(h1Q1 + h2Q2) , (4.34a)

ν
(0)
I+1/2 =

(8τI + 4τI−1 + 3 (hσa)I τI−1τI)

12 (τI−1 + τI)
φ

(0)
I

+

(
−4τI + 3 (hσa)I−1 τI−1τI

)
12 (τI−1 + τI)

φ
(0)
I−1 −

τI−1τI
4 (τI−1 + τI)

(hI−1QI−1 + hIQI) . (4.34b)

We now have two explicit expressions for the second moment of the angular

flux at each system boundary, one expression involving only the known incident

fluxes and the other involving only the cell average scalar flux unknowns, φ
(0)
i . We

finally equate the two expression at each interface, eliminating the second angular

moment and providing us with the final two equations necessary to form a closed

algebraic system. These two equations are given by the following expressions,
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∑
µn>0

(
µn
6γ

+ µ2
n

)
fnwn + (−1)I

∑
µn<0

(
−|µn|

6γ
+ µ2

n

)
gnwn

+
τ1τ2

4 (τ1 + τ2)
(h1Q1 + h2Q2)

=
(8τ1 + 4τ2 + 3 (hσa)1 τ1τ2)

12 (τ1 + τ2)
φ

(0)
1 +

(−4τ1 + 3 (hσa)2 τ1τ2)

12 (τ1 + τ2)
φ

(0)
2 , (4.35a)

∑
µn<0

(
|µn|
6γ

+ µ2
n

)
gnwn + (−1)I

∑
µn>0

(
−µn

6γ
+ µ2

n

)
fnwn

+
τI−1τI

4 (τI−1 + τI)
(hI−1QI−1 + hIQI)

=
(8τI + 4τI−1 + 3 (hσa)I τI−1τI)

12 (τI−1 + τI)
φ

(0)
I +

(
−4τI + 3 (hσa)I−1 τI−1τI

)
12 (τI−1 + τI)

φ
(0)
I−1. (4.35b)

Eq. (4.13) along with the two expressions above uniquely define the cell average

scalar flux φ(0) for all cells i, 1 ≤ i ≤ I. We can summarize the results of the

analysis by the statement

ψ
(0)
n,i = φ

(0)
i +O(ε), (4.36)

where φ
(0)
i is now completely defined on the interval 1 ≤ i ≤ I, by Eq. (4.13) and

Eqs. (4.35). We can see that the system of I equations which defines φ
(0)
i will

result in a tridiagonal linear system of the form described by Eq. (2.29), however

the elements of matrix A and vector ~Q will differ from those described in Chapter

2.

This asymptotic limit differs from the limit previously derived in [10] and [11]

mainly by the fact that the newly derived limit of the DD scheme is based on

cell average and not cell edge quantities. This allows us to directly compare the

interior tridiagonal stencil of the standard diffusion system to the altered tridiag-

onal stencil described by the DD asymptotic limit and to also directly compare

the boundary conditions derived. Sections 4.1 and 4.2 compare both the standard

and asymptotic cell average diffusion discretizations, for homogeneous media and

heterogeneous media, respectively. Some interesting numerical effects due to the
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disparity between the asymptotic and standard cell average diffusion discretizations

are discussed for each case material regime and a variety of methods attempting

to “fix” these numerical effects are presented.

4.1 Homogeneous Media

Analyzing the interior equation and boundary conditions of the linear system given

by the asymptotic limit of the DD discretization, Eq. (4.13) and Eqs. (4.35), is

considerably less complicated when considering a homogeneous media with no

incident flux, constant mesh spacing and a uniform external source. Thus in this

section the quantities σt,i, σa,i, Qi, and hi are simply given by σt, σa, Q, and h

since they are constant throughout the problem domain, which also implies that

τi = τ and ξi = ξ. Under these assumptions φ
(0)
i is determined in the slab interior

by

−
(
D − h2σa

4

) (φ(0)
i−1 − 2φ

(0)
i + φ

(0)
i+1

)
h2

+ σaφ
(0)
i = Q, 2 ≤ i ≤ I − 1, (4.37)

where the off-diagonal absorption terms have been lumped in to the diffusion co-

efficient to form an “effective” diffusion coefficient. The boundary conditions in a

homogeneous medium in the instance of vacuum are given by(
3D

h2
+
σa
4

)
φ1 +

(
−D
h2

+
σa
4

)
φ2 =

Q

2
, (4.38a)(

−D
h2

+
σa
4

)
φI−1 +

(
3D

h2
+
σa
4

)
φI =

Q

2
. (4.38b)

We can see that Eq. (2.30) and Eq. (4.37) have the same general form with the

exception of the “effective” diffusion coefficient present in the DD asymptotic limit

set of equations. The boundary conditions given by Eqs. (2.31) and Eqs. (4.38) are

also remarkably similar aside from the factor of 1/2 applied to the external source

term, Q, and the factor of 1/4 applied to σa. Thus we can make the statement

that the only circumstances under which the DD method will asymptotically limit

to the exact diffusion discretization described in Chapter 2 are when
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• σt = constant,

• h = constant,

• Q = constant,

• σa = 0.

It is important to note here that this concept is different than the concept of

legitimacy as defined by Larsen, Morel, and Miller [10]. Assuming that the system

given by Eq. (4.13) and Eqs. (4.35) does limit to Eq. (2.22) as h→ 0, and thus the

asymptotic limit of the DD scheme is a legitimate diffusion discretization, it still

cannot be claimed that it is an accurate diffusion discretization. By an accurate

diffusion discretization we mean that the solutions of the linear system described by

the DD asymptotic limit are good approximations to the solutions of the standard

discretized diffusion equation. By this definition we would expect the asymptotic

DD limit to be an accurate discretization only under the limiting conditions listed

above. We will explore this idea more thoroughly through numerical experiment,

however we will briefly show that this simplified form of the cell average based

asymptotic limit of the DD method is equivalent with the cell edge based form of

the limit derived in [10] and [11].

We begin by considering the same homogeneous medium with uniform source

and mesh spacing used above such that Eq. (2.85) can be shown to simplify to

−
(
D − h2σa

4

) (ν(0)
i−1/2 − 2ν

(0)
i+1/2 + ν

(0)
i+3/2

)
h2

+ σaν
(0)
i+1/2 =

1

3
Q, 2 ≤ i ≤ I − 1.

(4.39)

Writing the previous equation for cell i−1 and cell i and summing the resulting

expressions together yields

−
(
D − h2σa

4

)
(
ν

(0)
3−1/2 + ν

(0)
i−1/2

)
− 2

(
ν

(0)
i−1/2 + ν

(0)
i+1/2

)
+
(
ν

(0)
i+1/2 + ν

(0)
i+3/2

)
h2

+

σa

(
ν

(0)
i+1/2 + ν

(0)
i−1/2

)
=

2

3
Q, 2 ≤ i ≤ I − 1, (4.40)
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after a slight manipulation of the leakage term. If we now use the relation given by

Eq. (2.68), we can replace all of the cell edge quantities in the above equation with

cell average quantities, resulting in the same expression as that given by Eq. (4.37).

Thus we have shown that the asymptotic limit of the DD method derived in terms

of cell edge scalar fluxes is consistent with that derived in terms of cell average

scalar fluxes, for the specialized case considered above. We have also previously

shown the equivalence of the boundary conditions which is independent of any

assumptions regarding the problem parameters. However, under less restrictive

conditions we are not able to demonstrate such a relationship between Eq. (2.85)

and Eq. (4.13), determining a cell average based asymptotic limit instead requires

a separate analysis as performed in this work.

4.1.1 Effective Diffusion Coefficient

We have previously seen that for both the cell average and cell edge based asymp-

totic limits of the DD method, the standard diffusion coefficient has been replaced

by what we have termed an effective diffusion coefficient. This is because the factor

Deff =

(
D − (h2σa)

4

)
, (4.41)

now multiplies the leakage, so that regardless of the physical value of D the numer-

ical solution will behave as if D were Deff . Thus in the asymptotic limit Deff will

never equal D unless σa = 0. We can also see that should h or σa be sufficiently

large then Deff will take on a completely unphysical negative value. In fact, when

the mesh spacing satisfies the inequality,

h > 2

√
D

σa
= 2L, (4.42)

Deff will be negative. In the above condition L represents the diffusion length,

given by Eq. (2.34). This statement is consistent with the asymptotic analysis

employed as it demands an h that is O(1), since L is O(1), which is true by the

definition of the thick diffusion limit. We will now look at the effect that the

magnitude and sign of Deff has on the solution accuracy in a homogeneous region.

The numerical experiment which we will use is given by
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µn
dψn
dx

+ 100ψn =
(
100− 10−ω

) N∑
m=1

ψmwm + 10−3, 0 < x < 20

ψn(0) = 0, µn > 0

ψn(20) = 0, µn < 0

h = 1.0,

where the S8 quadrature set is used for all solutions and the reference solution

is found using the DD method on a mesh of 2 ∗ 104 spatial cells. Note that in

this problem we will be using a fixed mesh spacing, h = 1, but will be varying

the absorption cross section so that Deff will vary, taking on values both positive

and negative. We will primarily be interested in plotting the relative error in the

scalar flux which is calculated on a cell wise basis, where the fine-mesh reference

solutions has been averaged in a way such that it can be directly compared to the

thick cell DD solution. The edge errors are calculated using point-wise differences

at each point being plotted. It should also be noted that when ω = 0 the reference

solution is very flat, saturating at Q/σa = 10−3 throughout the slab interior, but

tends toward a parabolic shaped solution as ω →∞. The specific values of ω used

and the resulting Deff value are listed in Table 4.1, where we have also given the

mesh spacing in terms of the diffusion length, L, for the particular ω value. The

results of this numerical experiment for cell average and cell edge fluxes respectively

are shown in Figures 4.1 and 4.2 for the left half of the slab, with the right half

results being identical due to the problem symmetry.

Table 4.1. Deff for Varying σa Values

ω h/L σt σa Deff

0 17.32 100 1.00E+00 -2.466667E-01
1 5.48 100 1.00E-01 -2.166667E-02
2 1.73 100 1.00E-02 8.333333E-04
3 0.55 100 1.00E-03 3.083333E-03
4 0.17 100 1.00E-04 3.308333E-03
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Figure 4.1. Cell Average Absorption Regimes Resulting from Deff

We can see that the relative error saturates to practically zero at the slab

midpoint while the boundary cell typically has the largest error, for all of the ω

values. We can also see that there are roughly two different regimes that appear

when considering the relative error in the cell average fluxes, coinciding with the

magnitude of the absorption cross section. For the largest values of σa considered

(ω = 0, 1) the relative error is generally large at the boundary cell and oscillates

about zero while for smaller values of σa (ω = 3, 4) the error at the boundary cell

has decreased while in the interior the error can be seen to be flat and practically

zero. In the instance where ω = 2 the error at the boundary cell is very large but

instead of oscillating about zero the error saturates to zero by cell 4, from which

point on it is practically indistinguishable from the ω = 4 and ω = 5 cases.

The cases in which the relative error of the cell average scalar flux oscillate

about zero are also the cases where Deff takes on negative values, which in effect

describes a diffusion process that lumps particles together rather than smoothing

their spatial distribution. We must recall here that Deff only describes the behav-

ior in the system interior, i.e. away from the slab edges. We also recall that we

have previously shown the inequality of the asymptotic DD boundary conditions



81

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8  10

R
el

at
iv

e 
E

rr
o
r

Position

ω = 0
ω = 1
ω = 2
ω = 3
ω = 4

Figure 4.2. Cell Edge Absorption Regimes Resulting from Deff

and the analogous diffusion boundary conditions, so that near the system edges

we expect this to be a source of error in the solution. Thus, when we consider the

numerical effect of Deff it makes sense to ignore the first few cells in the problem.

Doing so we see that the largest oscillations occur for ω = 0, the case where we

have the most negative Deff and note that each increase in ω causes a decrease in

the magnitude of the oscillations.

We are able to make the same observations regarding the behavior of the cell

edge fluxes, but we should note that in this case the oscillations are much larger

than in the case of the cell average flux errors. We do however see the same

relationship between the oscillation magnitude andDeff , supporting the conclusion

that the larger the difference between Deff and D the larger the error in the system

interior will be.

To attempt to “fix” the error introduced by Deff we consider replacing σt and

c with σ̄t and c̄, respectively. The new values, σ̄t and c̄, will be chosen so that they

preserve the absorption cross section σa but so that Deff = D. The quantities are

then defined by
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Table 4.2. σ̄t and c̄ Values

ω h σt σa c σ̄t c̄

0 1 100 1.00E+00 0.990000 1.31579 0.240000000
1 1 100 1.00E-01 0.999000 11.76471 0.991500000
2 1 100 1.00E-02 0.999900 57.14286 0.999825000
3 1 100 1.00E-03 0.999990 93.02326 0.999989250
4 1 100 1.00E-04 0.999999 99.25558 0.999998993

σ̄t =

(
1

σt
+

3h2σa
4

)−1

, (4.43)

c̄ = c− 3h2σ2
a

4
. (4.44)

In Table 4.2 the σ̄t and c̄ values corresponding to the previous problem are

given. These altered values are quite different from the actual values for ω = 0.

We can see that as ω increases, and the overall absorption thus decreases, the

altered values approach the actual values. It is also interesting to note that had

we considered the case of ω = −1 then c̄ would have actually been negative! A

negative scattering ratio value is not only unintuitive but generally will introduce

numerical instability into any iterative calculation. For this reason even though

good results may be obtained it is generally undesirable to consider problems with

a negative c̄.

If we consider the numerical experiment previously defined where σt and c are

replaced with the σ̄t and c̄ given in Table 4.2 then we obtain Figures 4.3 and 4.4.

The most obvious effect of altering the cross section and scattering ratio was

greatly increasing the error at the system boundary. However we have already

discussed how Deff is a quantity that only describes the diffusion process on the

system interior. By changing these parameters at the system edge we are basically

describing an entirely different problem whereas by changing the parameters in

the slab interior we are “correcting” the effective diffusion coefficient. Accepting

that we have greatly increased the error at the boundary we will not display these

points on the plots so that the scales can be kept consistent with those used in
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Figure 4.3. Cell Average Scalar Flux Relative Error with Deff = D, σa → 0

Figures 4.1 and 4.2.

We can see that away from the boundary we have generally reduced the error

for both the cell average and cell edge fluxes by using the altered parameters, with

the effect being much more drastic in the case of the cell edge fluxes. These plots

show that it is possible to “fix” the diffusion discretization described by the thick

asymptotic limit of the DD method on the system interior. However, the problem

remains that imposing this fix greatly deteriorates the quality of the solution at the

system edges. As it turns out there is no simple way to deal with this situation.

One might consider using the actual σt and c values in the first cell and then

the altered parameters in the interior, however there is no reason to expect this

to work given that Deff is only defined in a homogeneous environment. If we

consider problems with non-constant total scattering cross sections and scattering

ratios then we cannot simplify Eq. (4.13) in a manner such that Deff results.

Previously we considered the case where we held h, Q, and σt constant while

varying σa, meaning that as σa → 0 we asymptotically approach the case of pure

scattering, in which case Deff = D. However it is important to realize that for each

σa value considered we were actually solving a problem with a completely different
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Figure 4.4. Cell Edge Scalar Flux Relative Error with Deff = D, σa → 0

solution than for the following and preceding σa values. In other words, as σa → 0

the solution transitioned from a relatively flat solution where the external source

was balanced by the absorption to a parabolic solution dominated by leakage.

Instead we now consider a problem where h, Q, σt, and σa are all given a

particular initial value and then scaled by ε in the manner described by Eq. (2.33).

In this scenario the shape of the solution will not approach a parabola, but rather

the solution will approach the solution to Eqs. (4.13) and (4.35) for the initial h,

Q, σt, and σa values as ε→ 0. It is also interesting to look at this scenario because

we can specifically pick a problem that puts us in the absorption regime where we

would expect the largest oscillations and then examine the solution error as ε→ 0.

The problem that we create is given by

µn
dψn
dx

+
100

ε
ψn =

(
100

ε
− ε10

) M∑
m=1

ψmwm + ε, 0 < x < 40

ψn(0) = 0, µn > 0

ψn(20) = 0, µn < 0
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Figure 4.5. Cell Average Scalar Flux Relative Error, ε → 0

h = 1.0.

The solution to this problem is extremely flat away from the immediate vicinity

of the boundary, and is given by Q̃/σ̃a = 0.1. In Figure 4.5 we show the relative

error in the cell average scalar fluxes when using DD to solve the above problem,

and in Figure 4.6 the relative error is shown when using DD along with the asymp-

totically corrected parameters σ̄t and c̄. Again due to the problem symmetry we

have only plotted half of the slab, 0 < x < 20.

We can see that when ε = 1 the oscillations are slightly smaller than the other

cases, but as ε decreases the solution approaches the asymptotic limit solution very

quickly and we have a nearly constant amplitude in the oscillations. We can also

see that again by using the asymptotically corrected parameters σ̄t and c̄ we have

effectively killed the oscillations. As in the previous case we see that by doing so

we have greatly increased the error at the system boundary, although this is not

perfectly clear in Figure 4.6 since the points have been cut-off so that the scales

could be kept constant between Figure 4.6 and Figure 4.5. Still these figures clearly

display the effect of the additional absorption terms in the thick diffusion limit of

the DD method.
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Figure 4.6. Cell Average Scalar Flux Relative Error with Deff = D, ε → 0

Eventually we would also like to know whether the diffusion discretization given

in Chapter 2 provides a good representation of the solution to spatially continuous

diffusion theory. To do so we now develop a discrete node based solution to the

diffusion equation in a homogeneous medium which is still exact. In this manner we

can compare the earlier finite-difference discretization with the exact discretization

and decide whether altering the DD problem to more closely emulate the finite-

difference diffusion discretization is a worthwhile endeavor.

4.1.2 Discrete Diffusion Solution

Homogeneous Case with c = 1

Again we will assume that the material properties and node sizes are constant

in this problem and also that the distributed source is uniform throughout the

slab. The notation and definitions used in Chapter 2 to discretize the diffusion

equation via finite differencing also apply equal to the discretization technique

being presented here.

The continuous diffusion equation that we are solving and its boundary condi-
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tions are given by

φ′′(x) = −Q
D
, (4.45a)

φ(x1/2) = 0, (4.45b)

φ(xI+1/2) = 0, (4.45c)

where x1/2 and xI+1/2 again denote the x–coordinates of the slab end points. The

general solution to this differential is easily found in terms of the constants c1 and

c2 to be

φ(x) = − Q

2D
x2 + c1x+ c2. (4.46)

Now we now solve for the constants c1 and c2 in terms of the unknown edge

fluxes, φ(xi−1/2) = φi−1/2 and φ(xi+1/2) = φi+1/2, which will become the edges of

a spatial cell in this discretization, where we have again used h to denote the cell

width. The point-wise flux can now be represented by

φ(x) = − Q

2D
x2 +

(
−Q

(
xi−1/2

)2
+Q

(
xi+1/2

)2 − 2D
(
φi−1/2

)
+ 2D

(
φi+1/2

)
2Dh

)
x

−

(
Q
(
xi+1/2

) (
xi−1/2

)
2D

)
−
(
φi+1/2

) (
xi−1/2

)
−
(
xi+1/2

) (
φi−1/2

)
h

. (4.47)

This solution remains exact throughout the entire domain of the slab. If we were

to set φi−1/2 and φi+1/2 to zero and choose xi−1/2 and xi+1/2 to be x1/2 and xI+1/2

respectively then the original problem would be completely solved. However, we

would like to split the problem into discrete nodes so that a node averaged solution

can be found. If we define the node average scalar flux as

φi =
1

h

∫ xi+1/2

xi−1/2

φ(x), (4.48)

then integrating Eq. (4.47) over the node, i.e. [xi−1/2, xi+1/2], results in
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φi =
1

2

(
φi−1/2 + φi+1/2

)
+
Qh2

12D
.

To simplify the above expression to this point it is necessary to recognize that

the node edge x–coordinates can be written in terms of the midpoint value as

xi±1/2 = xi ± h/2.

We would also like to impose the condition that the current is continuous

across a node interface. This is done by differentiating the analytic expression for

the flux in a node in two adjacent nodes, evaluating them at the x value of the

shared interface and setting them equal, such that

d

dx
φi(x)

∣∣∣∣
x=xi+1/2

=
d

dx
φi+1(x)

∣∣∣∣
x=xi+1/2

(4.49)

If we use φ(x) from (4.47) we find that this operation yields the relation

(
φi−1/2 − 2φi+1/2 + φi+3/2

)
= −Qh

2

D

Still waiting to address the boundary conditions, we now have the linear system

of equations given by

φi =
Qh2

12D
+

1

2

(
φi−1/2 + φi+1/2

)
, i = 1, . . . , I (4.50a)

(
φi−1/2 − 2φi+1/2 + φi+3/2

)
= −Qh

2

D
, i = 1, . . . , I − 1. (4.50b)

We know that we would like to solve a system of node averaged equations in

φi, so we will eliminate the edge quantities. If we take (4.50b) for node i and add

it to (4.50b) for node i− 1 we find the expression

(
φi−3/2 − φi−1/2 − φi+1/2 + φi+3/2

)
= −2Qh2

D
. (4.51)

It is now possible to use (4.50a) to eliminate all edge quantities. This is done by

writing (4.50a) for nodes i− 1, i, and i+1. If we then take the linear combination

of φi−1 − 2φi + φi+1 we see that we can use it to eliminate the left side of (4.51).

This leaves us with the following expression for only the node averaged fluxes, in

the slab interior,
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(φi−1 − 2φi + φ+1) = −Qh
2

D
, i = 2, . . . , I. (4.52)

This is expression is identical to the finite difference equations for the slab

interior, derived in Chapter 2, with this solution being exact for all of the node

average fluxes, no truncation error has been incurred. To close the system we need

to find boundary conditions in terms of these node average fluxes. We begin by

writing (4.50a) for nodes 1 and 2 and (4.50b) for node 1 and finally setting φ1/2 = 0

due to the imposed vacuum condition.

φ1 =
Qh2

12D
+

1

2
φ3/2

φ2 =
Qh2

12D
+

1

2

(
φ3/2 + φ 5

2

)
(
−2φ3/2 + φ5/2

)
= −Qh

2

D

Using all three equations we can eliminate the edge quantities φ3/2 and φ5/2 to

find the boundary condition for the left edge of the system. The same process is

applied to nodes I and I − 1 to find the corresponding right edge condition. The

complete closed system is now defined by

−D
h2

(φi−1 − 2φi + φi+1) = Q, i = 2, . . . , I, (4.53a)

−D
h2

(3φ1 − φ2) =
2Q

3
, (4.53b)

−D
h2

(3φI − φI−1) =
2Q

3
. (4.53c)

This set of equations is remarkably similar to the finite-differenced diffusion

equation in a homogeneous medium with the zero boundary condition. The inte-

rior equations are in fact identical with the only difference in the systems being the

factor of 2/3 applied to the right hand side of each boundary condition. Thus we

see that even the vacuum bounds for the finite differenced diffusion equation pre-

viously derived are deficient when compared to the exact diffusion theory solution,

although this can be fixed very easily in any one-dimensional diffusion implemen-
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tation. It is not easy, and perhaps not possible, to alter the DD method in a

manner such that the vacuum boundary conditions will asymptotically limit to

those given above. However, we must remember these results are for the special-

ized circumstance of a purely scattering medium. We now proceed to determine

an analytically exact discrete diffusion solution in the presence of absorption.

Homogeneous Case with c < 1

When we consider a finite amount of absorption in the previous problem the second

order ordinary differential equation we are solving is given by

φ′′(x)− 1

L2
φ(x) = −Q

D
, (4.54a)

φ(x1/2) = 0, (4.54b)

φ(xM+1/2) = 0, (4.54c)

This derivation turns out to be a special case of a more generalized multi-

dimensional nodal integral method derived in [36]. To find the analog to (4.50b)

for the c < 1 case we can directly substitute the relation

φm+1(+a)− 2φm(+a) + φm(−a)(
2 sinh(γa)

γ

)2 − γ2φm(+a) =
Sm + Sm+1

2
,m = 1, . . . ,M − 1,

from the previously mentioned paper, which after making the necessary notation

substitutions yields

(
φi−1/2 − 2φi+1/2 + φi+3/2

)
(2L sinh( h

2L
))2

− 1

L2
φi+1/2 = −Q

D
, i = 1, . . . , I − 1, (4.55)

where L is the diffusion length. If we now average Azmy’s [36] analytic solution

for the nodal flux over the length of a node and again make the necessary notation

changes we find that,
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φi =
L

h

(
φi−1/2 + φi+1/2

)
tanh

(
h

2L

)
+
Q

σa

(
1− 2L

h
tanh

(
h

2L

))
, i = 1, . . . , I.

(4.56)

To actually carry out the integration for this step the interval considered was

[−ai, ai] as in the work by Azmy, with the fact that in our notation h = 2a being

substituted in after the integration. This greatly simplifies the algebra involved

because it allows for the cancellation of many of the hyperbolic terms existing on

the node edge. Using (4.55) and (4.56) we can now carry out the exact same pro-

cedure as we did earlier to eliminate all edge quantities from the interior equations,

although the algebra is slightly more complicated. The resulting equation in terms

of node averaged fluxes is,

− D

(2L sinh( h
2L

))2
(φi−1 − 2φi + φi+1) + σaφi = Q, i = 2, . . . , I − 1 (4.57)

We note here that to if we were to expand the hyperbolic function to leading

order this equation is identical to the standard three point discretized diffusion

scheme. To close this system we would like to find vacuum boundary conditions

on both edges in the exact same manner as for the case where c = 1. Again there is

a good deal more algebraic manipulation involved here, but the process is identical.

The resulting closed system of equations is,

− D

(2L sinh( h
2L

))2
(φi−1 − 2φi + φi+1) + σaφi = Q, i = 2, . . . , I − 1, (4.58a)

(
2 cosh

(
h

L

)
+ 1

)
φ1 − φ2 =

2Q

σa

(
cosh

(
h

L

)
− L

h
sinh

(
h

L

))
, (4.58b)(

2 cosh

(
h

L

)
+ 1

)
φI − φI−1 =

2Q

σa

(
cosh

(
h

L

)
− L

h
sinh

(
h

L

))
. (4.58c)

If we rewrite the diffusion length, L, in terms of onlyD and σa and then consider

σa → 0, we find that this closed set of equations derived for c < 1 limits exactly

to the closed set of equations found in for the case where c = 1, as expected.
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We can see then that the diffusion discretization described in Chapter 2 rea-

sonably approximates the exact diffusion theory solution for c near one, with the

exception of the equations on the system boundary. So it would seem that it is

worthwhile to attempt to alter the DD method so that in the limit it behaves more

like the finite-differenced diffusion equation. However, we must remember that all

of the analysis done here is for the very restrictive case of a homogeneous region.

We should also consider problems containing more than one material region so

that we can look at the behavior of the DD method and diffusion theory across

material interfaces.

4.2 Heterogeneous Media

In this section we will consider Problem 2, given in 2.4.3, a two-region problem

dominated on the left by local balance and on the right by neutron leakage. We

will primarily be focusing on numerical results for this problem since Eq. (4.13)

cannot be simplified in any meaningful manner in the vicinity of the material

interface. We have solved Problem 2 using three solutions methods: Diamond

Difference, “asymptotically corrected” Diamond Difference (using σ̄t and c̄), and

the finite-differenced diffusion discretization described in Chapter 2. We will also

consider three different spatial meshes for this problem with the first spatial mesh

considered being being termed thick (each cell 100 mfp). The next spatial mesh

considered uses a fine mesh at the slab boundaries such that the first and last 100

cells are only a single mean free path thick. The final mesh uses a fine mesh both

in the vicinity of each boundary and the material interface, specifically the first

and last 100 cells are again a single mean free path thick while the the 100 cells

to both the left and right of the material interface are also of this thickness. To

analyze the behavior of the different solution methods for a given mesh we will plot

the magnitude of the relative error in the scalar flux. All solutions were calculated

using the S16 quadrature set with the reference solutions for each case calculated

using a mesh composed of 104 spatial cells.

In the case of the thick mesh we have already actually seen the results for the

DD method in Figure 2.5, although in that case we plotted the spatial distribution

of the scalar flux and not the error in the scalar flux solution in Figure 4.7. We
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Figure 4.7. Thick Mesh Cell Average Scalar Flux Relative Error for Two-Region
Problem

can see that in this case the DD method on its own performs the worst of the

three methods tested, with the discretized diffusion solution performing the best

in the source region and being comparable to the asymptotically fixed DD in the

scattering region. It is worthwhile to note that in this two-region problem for the

asymptotically fixed solution we have used σ̄t and c̄ as defined through Eqs. (4.43)

and (4.44), respectively, even though we know that the quantity Deff does not

describe the diffusion process near the system edges or the material interface. Still

this solution shows a considerable improvement over the standard DD solution

since it does not display the flux jump at the material interface. In fact, in the

scattering region the error is nearly two orders of magnitude lower as a result

of using the asymptotically corrected parameters. This does show that even in

two-region problems using thick spatial meshes the asymptotically corrected DD

parameters can be beneficial. Still we see that the discretized diffusion results for

this spatial mesh are much better than both DD solutions.

We now consider a mesh that spatially resolves the boundary layer at the each

boundary of the slab, which is done by using 100 cells which are each a single
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Figure 4.8. Resolved Boundary Mesh Cell Average Scalar Flux Relative Error for
Two-Region Problem

mean free path thick and then returning to cells 100 mean free paths thick for the

remaining interior of the slab. The relative error plots for each solution method

on this spatial mesh are given by Figure 4.8. We again see that in the region

dominated by local balance the discretized diffusion solution is extremely accurate

when compared to both of the DD solutions. For this spatial mesh and the thick

spatial mesh we also see a large increase in the discretized diffusion error across the

material interface, which is expected as diffusion theory does not allege to provide

accurate solutions near material interfaces or system boundaries. In the source

region we also see again that the asymptotically corrected DD solution is more

accurate than the standard DD solution, although this is not true in the scattering

region. We do note though that even though the asymptotically corrected DD error

increases across the material interface, in the scattering region it is still nearly two

orders of magnitude better than the discretized diffusion solution in this region.

We also note that the standard DD error actually decreases when the scattering

region is encountered. These DD results suggest that it is not only the presence of

Deff which causes problems in this solution as we can see that by merely resolving
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Figure 4.9. Resolved Interface and Boundary, Cell Average Scalar Flux Relative
Error for Two-Region Problem

the boundary layer the thick cell DD solution is much more accurate throughout

than in the case of the thick spatial mesh.

It is possible that the previously noted difference between the vacuum boundary

conditions for the diffusion discretization described in Chapter 2 and the asymp-

totic limit of the DD method is responsible for this behavior. By resolving the

boundary layer we are removing this component of the error which would other-

wise propagate throughout the problem and make the errors in Figure 4.8 more

closely resemble those in Figure 4.7. We can then explain the increase in error for

the asymptotically corrected DD solution across the interface by recalling that the

asymptotic corrections were defined for homogeneous media and so should not be

expected to work in the presence of material interfaces. In any case, Figure 4.8

shows that without the error component introduced at the slab boundary the DD

method is better than diffusion theory at handling material interfaces, even with

optically thick spatial cells.

In the final numerical experiment for the two-region problem we use a a spatial

mesh that again resolves the each boundary layer but also resolves the material
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interface by using 100 cells, each a mean free path thick, to the left and right

of the interface. The results of this experiment are plotted in Figure 4.9 and

are quite different from the results given in Figure 4.8. We see that when both

the material interface and boundaries are resolved using fine spatial meshes that

both the DD and discretized diffusion error within the source region is 0 to within

machine precision, while the asymptotically corrected DD error is a bit larger, but

still extremely small. This error is most likely introduced by the heterogeneity in

applying the correction to the optically thick cells while applying no correction to

the optically thin cells boundary cells. We see now that in the scattering region

the DD error is considerably smaller than with either of the previously discussed

spatial meshes. The asymptotically corrected DD error is actually coincident with

the DD error in this case, no error is propagated across the boundary because of

the fine spatial mesh and there is no asymptotic corrections to make in the pure

scattering medium, so in this region the solutions are identical.

We see now that for this problem Deff has little or no effect in the interior given

that any boundary layers and interfaces are suitably resolved. The asymptotically

corrected DD was only truly beneficial in the case of the thick mesh, where the

corrections were able to diminish the wild oscillations of the edge fluxes so that

error did not propagate from the source region to the scattering region.

We also see that while resolving the material interface greatly reduces the DD

error in each region, it has little effect on reducing the discretized diffusion error

across the interface and in the scattering region. It is interesting to consider at

this point that at the material interface in this problem Eq. (4.33) is most likely

not satisfied and so the asymptotic analysis predicts that in the thick limit the

DD method will not limit to the appropriate diffusion boundary condition. We

can see from Figure 4.9 that even if we were to limit to the correct diffusion

boundary condition, in this case it would be undesirable because diffusion theory

itself cannot accurately describe the scalar flux across the material interface. Thus

any attempt to correct the DD method to more accurately represent the correct

diffusion discretization in the thick diffusion limit will ultimately lead to results

that can only be as good as those shown by the discretized diffusion curve in Figure

4.9.

In fact, we could alter the work done in 4.1.2 so that the exact analytic dif-
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fusion solution could be constructed, in which case we would see results that are

practically identical to those shown in Figure 4.9 for the discretized diffusion curve.

Accepting that diffusion theory itself, even in slab geometry, has serious drawbacks

we consider the discrete-ordinates transport equation itself. Is it possible to con-

struct a one-dimensional auxiliary relation that effectively divides the transport

equation into analytically exact node-wise solutions as we did with the diffusion

equation in 4.1.2? Some preliminary work along these lines has been conducted

and is briefly presented in the following chapter.



CHAPTER

FIVE

Discrete SN Transport Solution

Attaining an analytic solution for the one-dimensional, discrete-ordinates equa-

tions is considerably more difficult than solving the one-dimensional diffusion equa-

tion, however the topic has been thoroughly covered in the literature, notably by

Chandrasekhar [7]. Davison [1] and Keller [37] considered the problem specifi-

cally for the case of neutron transport, with Keller actually providing generalized

solutions in matrix form. Warsa [38] authored a 2002 article where he reviews

solution methods to the problem with the ultimate goal of implementing the so-

lutions in the symbolic mathematical software, MAPLE. The paper also provides

the MAPLE scripts necessary to fully solve the problem in a heterogeneous media

with anisotropic scattering and a choice of boundary conditions. It is also possible

to compute the solution using a distributed source with any spatial dependence

for which a particular solution can be found.

Although generalized prescriptions for the solutions of the one-dimensional,

discrete-ordinates equations are available they often depend on numerically de-

termined eigenvalues and are generally complicated for higher order quadrature

sets. Here we will only set up the problem for the S2 case in a homogeneous

medium, considering both c = 1 and c < 1. The one-dimensional, steady-state,

monoenergetic S2 equations are then given by

µn
d

dx
ψn + σtψn = σtc (w1ψ1 + w2ψ2) +Q, n = 1, 2 (5.1)
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where Q is assumed to be constant in space and the quadrature set used follows

the rules given by Eqs. (2.3), in which case the above equations simplify to

d

dx
ψn +

σt
µn
ψn =

σtc

2µn
(ψ1 + ψ2) +

Q

µn
, n = 1, 2. (5.2)

Recalling the assumption that the the quadrature set is even about µ = 0 such

that µ1 = µ and µ2 = −µ, and utilizing matrix notation we can rewrite the above

equations as

d

dx
~ψ = A~ψ +

(
Qµ−1

−Qµ−1

)
, (5.3)

where the vector ~ψ is of length 2 having the elements ψ1 and ψ2 and the 2 x 2

matrix A is given by

A =

(
σt(c−2)

2µ
σtc
2µ

−σtc
2µ

−σt(c−2)
2µ

)
(5.4)

Calculating the eigenvalues, g, of A we find that

g1 =
σt
µ

√
1− c (5.5a)

g2 = −σt
µ

√
1− c (5.5b)

For the case where c < 1 this provides two real, unique roots of equal magnitude

with opposite sign. However, when c = 1 these two roots become a a double root

at the origin, which requires a special solution procedure. A particular solution for

the S2 problem must also be included due to the presence of the external source.

Rather than perform these derivations by hand we will utilize the computer algebra

system Mathematica and by doing so we can easily solve the S2 problem, including

boundary conditions, for both c = 1 and c < 1.

5.1 The S2 Problem for c = 1

We have seen previously with diffusion theory that the c = 1 case is often distinct

from the c < 1 case, and this is just as true for the S2 solution. Mathematica easily
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gives us the general solution to Eq. (5.3) where the vacuum boundary conditions

have imposed at the arbitrary endpoint A through the relations

ψn(−A) = 0, µn > 0 (5.6a)

ψn(A) = 0, µn < 0 (5.6b)

and ψ1 and ψ2 are given by the quadratic functions

ψ1(x) =
Q

µ

(
A (2µ+ Aσt)

2µ
+ x− σt

2µ
x2

)
(5.7a)

ψ2(x) =
Q

µ

(
A (2µ+ Aσt)

2µ
− x− σt

2µ
x2

)
(5.7b)

We now define the average angular flux, ψ̄n over the spatial range [xin, xout],

where h = xout − xin, by

ψ̄n =
1

h

∫ xout

xin

ψn(x), n = 1, 2. (5.8)

At this point we would like to consider taking three adjacent nodes, defined in

relation to an arbitrary point xi as depicted in Figure 5.1, such that for µ > 0,

xin = xi − 3h
2
, xi − h

2
, and xi +

h
2

xout = xi − h
2
, xi +

h
2
, and xi +

3h
2
,

and for µ < 0, xin and xout are just the opposite of above.

Figure 5.1. Arbitrary Discretization into Three Adjacent Nodes

We can now average both of Eqs. (5.7) over each of the three nodes depicted

in Figure 5.1. So for each of these nodes we now have an analytically defined node

average and we can evaluate Eqs. (5.7) at xin and xout to find the angular flux

values at the edge. At this point we propose an auxiliary relation which has the
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form

αψ̄n = [ψn(xout)− ψn(xin)] + β [ψn(xout) + ψn(xin)] + γφ̄ (5.9)

where α, β, and γ are at this point unknown constants and the scalar flux φ̄ for

this problem is defined as

φ̄ =
1

2

(
ψ̄1 + ψ̄2

)
.

We will now attempt to find an auxiliary relation which along with the balance

equation,

|µ|
hσt

[ψn(xout)− ψn(xin)] + ψ̄n = φ̄+
Q

σt
, (5.10)

will result in node average fluxes which are analytically exact. This is achieved

through writing the auxiliary relation given by Eq. (5.9) for each of the three

nodes depicted in Figure 5.1 and solving for the α, β, and γ which satisfy the

three equation linear system. Mathematica easily performs this operation, with

the resulting expressions given by

α =

(
12µ

hσt
− hσt

µ

)
, (5.11a)

β =
6µ

hσt
, (5.11b)

γ = −hσt
µ
. (5.11c)

where the Mathematica notebook used to calculate the parameters α, β, and γ is

provided in Appendix A for convenience.

If we were to now implement the same iterative algorithm used for DD, Step,

and AHOT-N0 to solve the spatially and angularly discretized transport problem

in slab geometry for a purely scattering medium, using the balance equation given

by Eq. (5.10) with the auxiliary relation in Eq. (5.9) which uses the parameter

definitions given by Eqs. (5.11), the resulting solution would be exact, in the

discrete-ordinates formulation. In other words, the auxiliary equation we have

derived does not commit any truncation errors due to the specific choice of α, β,
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and γ.

One of the downsides to this auxiliary relation is that the method used to

determine α, β, and γ is in no way mathematically rigorous. We would like to be

able to directly derive these parameters and also have some assurance that they

are invariant across a homogeneous slab, as numerical evidence suggests. Still the

numerical results do confirm that for the specific problem considered the solution

is exact. This discretization scheme was implemented by altering a preexisting

one-dimensional iterative SN code and used to calculate the solution to Problem

1, described in Chapter 2. The S2 quadrature set is used for all solutions and

the relative error between the discretization and a fine-mesh (104 spatial cells)

reference solution is given in Figure 5.2, where the DD and discretized diffusion

results are also provided for the sake of comparison.

We see that the error is exactly equal to zero throughout the slab domain as

expected, confirming that for the case of c = 1 and the S2 quadrature set this

discretization scheme results in exact solutions. Preliminary numerical evidence

also suggests that the same α, β, and γ can be used for higher order quadrature sets

without dramatically increasing the error. In the cases tested applying the exact
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S2 discretization for quadrature orders up to S8 still resulted relative errors nearly

two orders of magnitude lower than DD solutions calculated on the same spatial

mesh with the same quadrature order. However we realize that there is no reason

to believe we will generally witness this behavior, and ideally we would hope that

α, β, and γ values could be found which can be used to calculate the exact solution

to the discrete-ordinates problem with quadrature sets larger than S2. We must

also realize that these parameters were found for the very special case of c = 1 and

that the development of more general parameters, which can describe the solution

to problems containing finite amounts of absorption, are desirable, with the early

work done in this area being presented briefly in the following section.

5.2 The S2 Problem for c < 1

For the S2 problem with c < 1 we do not have the luxury of working with poly-

nomial functions. The presence of two real and unique roots to the characteristic

equation implies that the homogeneous solution will be exponential in nature.

Again we use Mathematica to find the general solution, after imposing the vacuum

boundary conditions, Eqs. (5.6), on the problem. ψ1 and ψ2 are again easily found,

but in this case the resulting expressions are too unwieldy to explicitly write below.

In this case we were not able to use the arbitrary 3 cell discretization shown in

Figure 5.1 because of a failure by Mathematica to simplify the final expression.

The notebook used to determine the α, β, and γ values in this section is provided

in Appendix B. As the process is identical for the most part to last time the

majority of it will be skipped.

For the c < 1 case we are able to solve for the exact α, β, and γ which satisfy

the auxiliary relation given by

|µ|
hσt

[ψn(xout)− ψn(xin)] + ψ̄n = cφ̄+
Q

σt
, (5.12)

but the expressions are enormous and extremely complex which makes them

basically impossible to work with. To overcome this problem we have expanded

the expressions for α, β, and γ in Taylor series centered on c = 0. Mathematica can

perform the series expansion and then simplify the resulting terms into forms we
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are more capable of working with. Below we show the values which were calculated

using the attached Mathematica notebook.

α =
2hσT

h coth
(
hσT

2µ

)
σT − 2µ

+
h2σ2

T

(
3µ sinh

(
hσT

µ

)
− h

(
cosh

(
hσT

µ

)
+ 2
)
σT

)
c

2µ
(
h cosh

(
hσT

2µ

)
σT − 2µ sinh

(
hσT

2µ

))2 +O
(
c2
)
, (5.13a)

β =

(
−1 + e

hσT
µ

)
hσT(

1 + e
hσT

µ

)
hσT − 2

(
−1 + e

hσT
µ

)
µ

−


(
hσT

(
−4
(
−1 + e

hσT
µ

)2

µ2 +
(
−1 + e

2hσT
µ

)
hσTµ+ 2e

hσT
µ h2σ2

T

))
2

(
µ
((

1 + e
hσT

µ

)
hσT − 2

(
−1 + e

hσT
µ

)
µ
)2
)

 c
+O

(
c2
)
, (5.13b)

γ = −hσT c
µ

+O
(
c2
)
. (5.13c)

The expressions given above are O(c2), however by merely changing the num-

ber of terms retained in the Taylor expansion in Mathematica we should be able

to determine α, β, and γ to any order we desire, assuming that Mathematica can

handle the simplification procedure. Again the heavy dependence of this proce-

dure on Mathematica points out why it would be beneficial to develop a more

mathematically rigorous method to determine α, β, and γ.

The discretization described by Eqs. (5.12) and (5.13) has been implemented

in the same iterative code as the c = 1 discretization with success. To evaluate

the accuracy of the discretization we again consider the magnitude of the relative

error in the cell average scalar flux for a sample problem. In this instance we are

more interested in how the error varies with c than how it varies spatially so we

will plot the relative error in the boundary cell and at the center-most cell versus

c, where again we include S2 DD results for the sake of comparison. The problem
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considered in this case is given by

µn
dψn
dx

+ ψn = c
M∑
m=1

ψmwm + 1.0, 0 < x < 10

ψn(0) = 0, µn > 0

ψn(20) = 0, µn < 0

h = 1.0.

The reference solution used to determine the relative errors is the exact S2

solution, found and then averaged into the appropriate cell structure using Math-

ematica . The results of this numerical experiment are given in Figure 5.3.
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The behavior shown by the new S2 based is exactly as we would expect and

confirms that α, β, and γ have been determined correctly. For the c = 0 case

the relative error of the new method is practically zero and then increases with c,

which makes sense since the deviation from the “true” values of the parameters

α, β, and γ is O(c2). We see that even for large c values the new S2 method has

a relative error that is many orders of magnitude smaller than the DD error. By
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considering the O(c2) terms the difference between the error in the DD results and

the new S2 based results would increase further.

This chapter presented some very preliminary results which should be studied

more thoroughly and we recognize a great deal of work still exists in generalizing

and expanding these results, with specific recommendations for ways to approach

this given in 6.2. Still, the results generated to this point are encouraging. We

have successfully created a one-dimensional transport discretization which can re-

produce the exact S2 solution in a purely scattering medium and described another

for the case where c < 1 which is a good approximation to the S2 solution. In the-

ory the c < 1 discretization could generate solutions that are arbitrarily close to

the exact solution by increasing the number of terms retained in the Taylor series

expansion.



CHAPTER

SIX

Conclusions

6.1 Summary of Work

The objective of this work was to investigate the thick diffusion limit of vari-

ous spatial discretizations of the one-dimensional, steady-state, monoenergetic,

discrete-ordinates neutron transport equation. Though this area has been studied

extensively in the literature this work was meant to specifically address the two

lowest order nodal methods, AHOT-N0 and AHOT-N1, as well as reanalyze the

DD method with the intent of focusing on cell average and not cell quantities.

In Chapter 1 the basic premise of this work was described followed by a review of

the relative literature which covered the general realm of neutron transport theory,

spatially continuous asymptotic analyses of the one-dimensional discrete-ordinates

equations, spatially discretized asymptotic analyses of the one-dimensional discrete-

ordinates equations, and the development of nodal transport methods.

Chapter 2 presented the mathematics and physical theory necessary to follow

the works described in the literature review and the new work done in this thesis.

The foundations of neutron transport theory were covered and the one-dimensional

transport equation was subsequently discretized in both space and angle. Diffusion

theory was also explained and spatially discretized for the one dimensional case.

The asymptotic diffusion limit was then presented for the spatially continuous

transport equation and then the analyses of spatially discretized transport equation
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using the Step and DD methods were given along with some numerical results.

In Chapter 3 the asymptotic analyses of the AHOT-N0 and AHOT-N1 nodal

methods were presented along with numerical results, confirming the analyses. It

was seen that the AHOT-N0 method limits to the Step method in the optically

thick, diffusive media and does not generally possess the thick diffusion limit for

cell edge or cell average fluxes, although it can under certain restrictive conditions.

It was also shown that the AHOT-N1 method limits to a legitimate diffusion

discretization in the system interior and its boundary conditions limit to the ap-

propriate diffusion boundary conditions, giving the AHOT-N1 method the thick

diffusion limit for both the cell average and cell edge fluxes. The numerical tests

presented in this section confirm the conclusions drawn regarding each method.

We then reexamined the DD method in Chapter 4 with the intention of deriving

the limit using cell average and not cell edge scalar fluxes. The asymptotic limit

derived was a tridiagonal linear system based solely on cell average scalar fluxes

and the known incident fluxes. Although the resulting system may be a legitimate

discretization of the diffusion equation, it is certainly not desirable. It was shown

that the only when σt, h, and Q are constant and σa = 0 is the asymptotic limit of

the DD method close to the diffusion discretization derived in Chapter 2, although

there is still disparity between the systems at the boundary. In this chapter the

asymptotic DD limit was considered for a homogeneous region and it was shown

that in the precision of absorption the diffusion coefficient in the problem was

not the physical D, but rather an effective diffusion coefficient, which was capable

of becoming negative and thus introducing numeric error into the DD solution.

Numerical errors introduced by the boundary conditions and material interfaces

were also explored in a section dealing with the asymptotic DD cell average limit

in a two-region problem.

A discrete diffusion solution which exactly solves the one-dimensional diffusion

equation in a homogeneous region with constant cross sections and a uniform

external source was also developed in Chapter 4. We saw that for the case where

c = 1 the exact solution in the interior is the same as the finite-differenced diffusion

discretization developed in Chapterchapt:background although the exact boundary

conditions differed from the finite-differenced boundary conditions by a factor of

2/3 applied to the external source. We also showed that for c < 1 the exact discrete
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diffusion solution is based on hyperbolic functions, which limit to the exact solution

for the c = 1 as c→ 1.

Finally, in Chapter 5 we outline the develop of a discrete-ordinates spatial

discretization which is exact for the S2 quadrature set in a purely scattering ho-

mogeneous region with vacuum boundaries. We also show preliminary work done

in generalizing the discretization to be compatible with problems where c < 1.

6.2 Recommendations for Future Work

There are many avenues along which future research could proceed from this work.

One particular area of interest is the failure mechanism of the AHOT-N0 method

in the thick diffusion limit. We know that the AHOT-N0 solution is exact aside

from the representation of the scattering source as a constant and still the method

fails in the thick diffusion limit while the DD method succeeds in certain cases. It

would be beneficial to construct the exact scattering source and experiment further

with the AHOT-N0 and DD methods. With the exact scattering source used in

conjunction with AHOT-N0 we should expect an exact solution, is this the case?

By examining the exact scattering source can we pinpoint why AHOT-N0 fails and

DD does not?

While the low order nodal methods, AHOT-N0 and AHOT-N1, were analyzed

in the thick diffusion limit it may be worthwhile to examine these methods in

the intermediate diffusion limit, which has received considerably less attention in

the literature. While the Step method was analyzed in the intermediate diffusion

limit it is not immediately clear that the results will be directly applicable to

the AHOT-N0 method. The intermediate diffusion limit analysis of the AHOT-

N1 method would also be interesting since Larsen, Morel, and Miller [10] only

examined methods based on constant representations of the cell flux in their 1987

work. The thick limit results imply nothing about the results in the intermediate

limit so it is very possible that AHOT-N0 may possess the intermediate diffusion

limit while the AHOT-N1 method does not.

Aside from the diffusion limit research the exact SN based discretization de-

scribed in Chapter 5 is only in the very preliminary stages, leaving much work to

be done. A mathematically rigorous approach to deriving the α, β, and γ param-
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eters should be implemented both for c = 1 and for the case where c < 1. The

discretization should also be extended so that it can be applied to problems con-

taining heterogeneities and non-vacuum boundary conditions. Finally and maybe

most importantly, the method should be extended so the exact calculated solution

is exact quadrature sets of orders higher than S2.



APPENDIX

A

C=1 Mathematica Notebook

S2 Solution (c=1)

bounds2 = {ψ1[−A] == 0, ψ2[A] == 0} ;bounds2 = {ψ1[−A] == 0, ψ2[A] == 0} ;bounds2 = {ψ1[−A] == 0, ψ2[A] == 0} ;

General Solution

gensol2 = Simplify
[
DSolve

[{
µ∂x (ψ1[x]) + σTψ1[x]− (σT )

(
ψ1[x]+ψ2[x]

2

)
−Q == 0,gensol2 = Simplify

[
DSolve

[{
µ∂x (ψ1[x]) + σTψ1[x]− (σT )

(
ψ1[x]+ψ2[x]

2

)
−Q == 0,gensol2 = Simplify

[
DSolve

[{
µ∂x (ψ1[x]) + σTψ1[x]− (σT )

(
ψ1[x]+ψ2[x]

2

)
−Q == 0,

−µ∂x (ψ2[x]) + σTψ2[x]− (σT )
(
ψ1[x]+ψ2[x]

2

)
−Q == 0, bounds2

}
,−µ∂x (ψ2[x]) + σTψ2[x]− (σT )

(
ψ1[x]+ψ2[x]

2

)
−Q == 0, bounds2

}
,−µ∂x (ψ2[x]) + σTψ2[x]− (σT )

(
ψ1[x]+ψ2[x]

2

)
−Q == 0, bounds2

}
,

{ψ1[x], ψ2[x]} , x]] ;{ψ1[x], ψ2[x]} , x]] ;{ψ1[x], ψ2[x]} , x]] ;
ψ1[x ] = ψ1[x]/.gensol2;ψ1[x ] = ψ1[x]/.gensol2;ψ1[x ] = ψ1[x]/.gensol2;

ψ2[x ] = ψ1[x]/.gensol2;ψ2[x ] = ψ1[x]/.gensol2;ψ2[x ] = ψ1[x]/.gensol2;

Cell average fluxes

c11 = Simplify
[

1
h
Integrate

[
ψ1[z],

{
z, xi − 3h

2
, xi − h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c11 = Simplify

[
1
h
Integrate

[
ψ1[z],

{
z, xi − 3h

2
, xi − h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c11 = Simplify

[
1
h
Integrate

[
ψ1[z],

{
z, xi − 3h

2
, xi − h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;

c12 = Simplify
[

1
h
Integrate

[
ψ2[z],

{
z, xi − 3h

2
, xi − h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c12 = Simplify

[
1
h
Integrate

[
ψ2[z],

{
z, xi − 3h

2
, xi − h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c12 = Simplify

[
1
h
Integrate

[
ψ2[z],

{
z, xi − 3h

2
, xi − h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;

c21 = Simplify
[

1
h
Integrate

[
ψ1[z],

{
z, xi − h

2
, xi +

h
2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c21 = Simplify

[
1
h
Integrate

[
ψ1[z],

{
z, xi − h

2
, xi +

h
2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c21 = Simplify

[
1
h
Integrate

[
ψ1[z],

{
z, xi − h

2
, xi +

h
2

}]
, Q > 0&&σT > 0&&µ > 0

]
;

c22 = Simplify
[

1
h
Integrate

[
ψ2[z],

{
z, xi − h

2
, xi +

h
2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c22 = Simplify

[
1
h
Integrate

[
ψ2[z],

{
z, xi − h

2
, xi +

h
2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c22 = Simplify

[
1
h
Integrate

[
ψ2[z],

{
z, xi − h

2
, xi +

h
2

}]
, Q > 0&&σT > 0&&µ > 0

]
;

c31 = Simplify
[

1
h
Integrate

[
ψ1[z],

{
z, xi +

h
2
, xi + 3h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c31 = Simplify

[
1
h
Integrate

[
ψ1[z],

{
z, xi +

h
2
, xi + 3h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c31 = Simplify

[
1
h
Integrate

[
ψ1[z],

{
z, xi +

h
2
, xi + 3h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;

c32 = Simplify
[

1
h
Integrate

[
ψ2[z],

{
z, xi +

h
2
, xi + 3h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c32 = Simplify

[
1
h
Integrate

[
ψ2[z],

{
z, xi +

h
2
, xi + 3h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;c32 = Simplify

[
1
h
Integrate

[
ψ2[z],

{
z, xi +

h
2
, xi + 3h

2

}]
, Q > 0&&σT > 0&&µ > 0

]
;
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Finding coefficients

Solve
[{

Simplify
[
αc11 − γ

(
c11+c12

2

)
−
(
ψ1

[
xi − h

2

]
− ψ1

[
xi − 3h

2

])
Solve

[{
Simplify

[
αc11 − γ

(
c11+c12

2

)
−
(
ψ1

[
xi − h

2

]
− ψ1

[
xi − 3h

2

])
Solve

[{
Simplify

[
αc11 − γ

(
c11+c12

2

)
−
(
ψ1

[
xi − h

2

]
− ψ1

[
xi − 3h

2

])
−β
(
ψ1

[
xi − h

2

]
+ ψ1

[
xi − 3h

2

])]
== 0, Simplify

[
αc21 − γ

(
c21+c22

2

)
−β
(
ψ1

[
xi − h

2

]
+ ψ1

[
xi − 3h

2

])]
== 0, Simplify

[
αc21 − γ

(
c21+c22

2

)
−β
(
ψ1

[
xi − h

2

]
+ ψ1

[
xi − 3h

2

])]
== 0, Simplify

[
αc21 − γ

(
c21+c22

2

)
−
(
ψ1

[
xi +

h
2

]
− ψ1

[
xi − h

2

])
− β

(
ψ1

[
xi +

h
2

]
+ ψ1

[
xi − h

2

])]
== 0,−

(
ψ1

[
xi +

h
2

]
− ψ1

[
xi − h

2

])
− β

(
ψ1

[
xi +

h
2

]
+ ψ1

[
xi − h

2

])]
== 0,−

(
ψ1

[
xi +

h
2

]
− ψ1

[
xi − h

2

])
− β

(
ψ1

[
xi +

h
2

]
+ ψ1

[
xi − h

2

])]
== 0,

Simplify
[
αc31 − γ

(
c31+c32

2

)
−
(
ψ1

[
xi + 3h

2

]
− ψ1

[
xi +

h
2

])
Simplify

[
αc31 − γ

(
c31+c32

2

)
−
(
ψ1

[
xi + 3h

2

]
− ψ1

[
xi +

h
2

])
Simplify

[
αc31 − γ

(
c31+c32

2

)
−
(
ψ1

[
xi + 3h

2

]
− ψ1

[
xi +

h
2

])
−β
(
ψ1

[
xi + 3h

2

]
+ ψ1

[
xi +

h
2

])]
== 0

}
, {α, β, γ}

]
−β
(
ψ1

[
xi + 3h

2

]
+ ψ1

[
xi +

h
2

])]
== 0

}
, {α, β, γ}

]
−β
(
ψ1

[
xi + 3h

2

]
+ ψ1

[
xi +

h
2

])]
== 0

}
, {α, β, γ}

]
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B

C < 1 Mathematica Notebook

S2 Solution (c<1)

bounds2 = {ψ1[−A] == 0, ψ2[A] == 0} ;bounds2 = {ψ1[−A] == 0, ψ2[A] == 0} ;bounds2 = {ψ1[−A] == 0, ψ2[A] == 0} ;

General Solution

gensol2 = Simplify [DSolve [{µ∂x (ψ1[x]) + σTψ1[x]gensol2 = Simplify [DSolve [{µ∂x (ψ1[x]) + σTψ1[x]gensol2 = Simplify [DSolve [{µ∂x (ψ1[x]) + σTψ1[x]

− (σT ∗ c)
(
ψ1[x]+ψ2[x]

2

)
−Q == 0,−µ∂x (ψ2[x]) + σTψ2[x]− (σT ∗ c)

(
ψ1[x]+ψ2[x]

2

)
−Q == 0,−µ∂x (ψ2[x]) + σTψ2[x]− (σT ∗ c)

(
ψ1[x]+ψ2[x]

2

)
−Q == 0,−µ∂x (ψ2[x]) + σTψ2[x]

− (σT ∗ c)
(
ψ1[x]+ψ2[x]

2

)
−Q == 0, bounds2

}
,− (σT ∗ c)

(
ψ1[x]+ψ2[x]

2

)
−Q == 0, bounds2

}
,− (σT ∗ c)

(
ψ1[x]+ψ2[x]

2

)
−Q == 0, bounds2

}
,

{ψ1[x], ψ2[x]} , x] , c < 1] ;{ψ1[x], ψ2[x]} , x] , c < 1] ;{ψ1[x], ψ2[x]} , x] , c < 1] ;

ψ1[x ]:=ψ1/.gensol2;ψ1[x ]:=ψ1/.gensol2;ψ1[x ]:=ψ1/.gensol2;

ψ2[x ]:=ψ2/.gensol2;ψ2[x ]:=ψ2/.gensol2;ψ2[x ]:=ψ2/.gensol2;

Cell average fluxes

c11 = Simplify
[

1
h
Integrate [ψ1[z], {z,−A,−A+ h}] ,c11 = Simplify

[
1
h
Integrate [ψ1[z], {z,−A,−A+ h}] ,c11 = Simplify

[
1
h
Integrate [ψ1[z], {z,−A,−A+ h}] ,

c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;

c12 = Simplify
[

1
h
Integrate [ψ2[z], {z,−A,−A+ h}] ,c12 = Simplify

[
1
h
Integrate [ψ2[z], {z,−A,−A+ h}] ,c12 = Simplify

[
1
h
Integrate [ψ2[z], {z,−A,−A+ h}] ,

c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;
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c21 = Simplify
[

1
h
Integrate [ψ1[z], {z,−A+ h,−A+ 2h}] ,c21 = Simplify

[
1
h
Integrate [ψ1[z], {z,−A+ h,−A+ 2h}] ,c21 = Simplify

[
1
h
Integrate [ψ1[z], {z,−A+ h,−A+ 2h}] ,

c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;

c22 = Simplify
[

1
h
Integrate [ψ2[z], {z,−A+ h,−A+ 2h}] ,c22 = Simplify

[
1
h
Integrate [ψ2[z], {z,−A+ h,−A+ 2h}] ,c22 = Simplify

[
1
h
Integrate [ψ2[z], {z,−A+ h,−A+ 2h}] ,

c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;

c31 = Simplify
[

1
h
Integrate [ψ1[z], {z,−A+ 2h,−A+ 3h}] ,c31 = Simplify

[
1
h
Integrate [ψ1[z], {z,−A+ 2h,−A+ 3h}] ,c31 = Simplify

[
1
h
Integrate [ψ1[z], {z,−A+ 2h,−A+ 3h}] ,

c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;

c32 = Simplify
[

1
h
Integrate [ψ2[z], {z,−A+ 2h,−A+ 3h}] ,c32 = Simplify

[
1
h
Integrate [ψ2[z], {z,−A+ 2h,−A+ 3h}] ,c32 = Simplify

[
1
h
Integrate [ψ2[z], {z,−A+ 2h,−A+ 3h}] ,

c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;c < 1&&Q > 0&&σT > 0&&µ > 0] ;

Finding Coefficients

eq1 = Simplify
[
αc11 − γ

(
c11+c12

2

)
− (ψ1[−A+ h]− ψ1[−A])eq1 = Simplify

[
αc11 − γ

(
c11+c12

2

)
− (ψ1[−A+ h]− ψ1[−A])eq1 = Simplify

[
αc11 − γ

(
c11+c12

2

)
− (ψ1[−A+ h]− ψ1[−A])

−β (ψ1[−A+ h] + ψ1[−A])] ;−β (ψ1[−A+ h] + ψ1[−A])] ;−β (ψ1[−A+ h] + ψ1[−A])] ;

eq2 = Simplify
[
αc21 − γ

(
c21+c22

2

)
− (ψ1[−A+ 2h]− ψ1[−A+ h])eq2 = Simplify

[
αc21 − γ

(
c21+c22

2

)
− (ψ1[−A+ 2h]− ψ1[−A+ h])eq2 = Simplify

[
αc21 − γ

(
c21+c22

2

)
− (ψ1[−A+ 2h]− ψ1[−A+ h])

−β (ψ1[−A+ 2h] + ψ1[−A+ h])] ;−β (ψ1[−A+ 2h] + ψ1[−A+ h])] ;−β (ψ1[−A+ 2h] + ψ1[−A+ h])] ;

eq3 = Simplify
[
αc31 − γ

(
c31+c32

2

)
− (ψ1[−A+ 3h]− ψ1[−A+ 2h])eq3 = Simplify

[
αc31 − γ

(
c31+c32

2

)
− (ψ1[−A+ 3h]− ψ1[−A+ 2h])eq3 = Simplify

[
αc31 − γ

(
c31+c32

2

)
− (ψ1[−A+ 3h]− ψ1[−A+ 2h])

−β (ψ1[−A+ 3h] + ψ1[−A+ 2h])] ;−β (ψ1[−A+ 3h] + ψ1[−A+ 2h])] ;−β (ψ1[−A+ 3h] + ψ1[−A+ 2h])] ;

Gamma

alpha1 = Simplify[Solve[eq1 == 0, α]];alpha1 = Simplify[Solve[eq1 == 0, α]];alpha1 = Simplify[Solve[eq1 == 0, α]];

beta1 = Simplify[Solve[eq2 == 0/.alpha1, β][[1]]];beta1 = Simplify[Solve[eq2 == 0/.alpha1, β][[1]]];beta1 = Simplify[Solve[eq2 == 0/.alpha1, β][[1]]];

gamma1 = Solve[eq3 == 0/.alpha1/.beta1, γ][[1]];gamma1 = Solve[eq3 == 0/.alpha1/.beta1, γ][[1]];gamma1 = Solve[eq3 == 0/.alpha1/.beta1, γ][[1]];

Simplify[Series[γ/.gamma1, {c, 0, 1}]]Simplify[Series[γ/.gamma1, {c, 0, 1}]]Simplify[Series[γ/.gamma1, {c, 0, 1}]]

Beta

alpha2 = Simplify[Solve[eq1 == 0, α][[1]]];alpha2 = Simplify[Solve[eq1 == 0, α][[1]]];alpha2 = Simplify[Solve[eq1 == 0, α][[1]]];

gamma2 = Simplify[Solve[eq2 == 0/.alpha2, γ][[1]]];gamma2 = Simplify[Solve[eq2 == 0/.alpha2, γ][[1]]];gamma2 = Simplify[Solve[eq2 == 0/.alpha2, γ][[1]]];

beta2 = Solve[eq3 == 0/.alpha2/.gamma2, β][[1]];beta2 = Solve[eq3 == 0/.alpha2/.gamma2, β][[1]];beta2 = Solve[eq3 == 0/.alpha2/.gamma2, β][[1]];

Simplify[Series[β/.beta2, {c, 0, 1}],TimeConstraint → 3000]Simplify[Series[β/.beta2, {c, 0, 1}],TimeConstraint → 3000]Simplify[Series[β/.beta2, {c, 0, 1}],TimeConstraint → 3000]

Alpha

gamma3 = Simplify[Solve[eq1 == 0, γ][[1]]];gamma3 = Simplify[Solve[eq1 == 0, γ][[1]]];gamma3 = Simplify[Solve[eq1 == 0, γ][[1]]];

beta3 = Simplify[Solve[eq2 == 0/.gamma3, β][[1]]];beta3 = Simplify[Solve[eq2 == 0/.gamma3, β][[1]]];beta3 = Simplify[Solve[eq2 == 0/.gamma3, β][[1]]];
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alpha3 = Solve[eq3 == 0/.gamma3/.beta3, α][[1]];alpha3 = Solve[eq3 == 0/.gamma3/.beta3, α][[1]];alpha3 = Solve[eq3 == 0/.gamma3/.beta3, α][[1]];

Simplify[Series[α/.alpha3, {c, 0, 1}],TimeConstraint → 3000]Simplify[Series[α/.alpha3, {c, 0, 1}],TimeConstraint → 3000]Simplify[Series[α/.alpha3, {c, 0, 1}],TimeConstraint → 3000]
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