FY 2006 Miniature Spherical Retroreflectors Final Report

PDF Version Also Available for Download.

Description

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods ... continued below

Physical Description

PDFN

Creation Information

Anheier, Norman C.; Bernacki, Bruce E. & Krishnaswami, Kannan December 28, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

Physical Description

PDFN

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-16320
  • Grant Number: AC05-76RL01830
  • DOI: 10.2172/901474 | External Link
  • Office of Scientific & Technical Information Report Number: 901474
  • Archival Resource Key: ark:/67531/metadc886707

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 28, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 5, 2016, 4:33 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Anheier, Norman C.; Bernacki, Bruce E. & Krishnaswami, Kannan. FY 2006 Miniature Spherical Retroreflectors Final Report, report, December 28, 2006; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc886707/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.