Recent Progress on the Marylie/Impact Beam Dynamics Code

PDF Version Also Available for Download.

Description

MARYLIE/IMPACT (ML/I) is a hybrid code that combines the beam optics capabilities of MARYLIE with the parallel Particle-In-Cell capabilities of IMPACT. In addition to combining the capabilities of these codes, ML/I has a number of powerful features, including a choice of Poisson solvers, a fifth-order rf cavity model, multiple reference particles for rf cavities, a library of soft-edge magnet models, representation of magnet systems in terms of coil stacks with possibly overlapping fields, and wakefield effects. The code allows for map production, map analysis, particle tracking, and 3D envelope tracking, all within a single, coherent user environment. ML/I has a ... continued below

Creation Information

Ryne, R.D.; Qiang, J.; Bethel, E.W.; Pogorelov, I.; Shalf, J.; Siegerist, C. et al. December 6, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

MARYLIE/IMPACT (ML/I) is a hybrid code that combines the beam optics capabilities of MARYLIE with the parallel Particle-In-Cell capabilities of IMPACT. In addition to combining the capabilities of these codes, ML/I has a number of powerful features, including a choice of Poisson solvers, a fifth-order rf cavity model, multiple reference particles for rf cavities, a library of soft-edge magnet models, representation of magnet systems in terms of coil stacks with possibly overlapping fields, and wakefield effects. The code allows for map production, map analysis, particle tracking, and 3D envelope tracking, all within a single, coherent user environment. ML/I has a front end that can read both MARYLIE input and MAD lattice descriptions. The code can model beams with or without acceleration, and with or without space charge. Developed under a US DOE Scientific Discovery through Advanced Computing (SciDAC) project, ML/I is well suited to large-scale modeling, simulations having been performed with up to 100M macroparticles. The code inherits the powerful fitting and optimizing capabilities of MARYLIE augmented for the new features of ML/I. The combination of soft-edge magnet models, high-order capability, space charge effects, and fitting/optimization capabilities, make ML/I a powerful code for a wide range of beam optics design problems. This paper provides a description of the code and its unique capabilities.

Source

  • 2006 International Computational AcceleratorPhysics Conference, Chamonix, France, October 2 - 6,2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--62017
  • Report No.: CBP Note - 765
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 902811
  • Archival Resource Key: ark:/67531/metadc886691

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 6, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 30, 2016, 12:43 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ryne, R.D.; Qiang, J.; Bethel, E.W.; Pogorelov, I.; Shalf, J.; Siegerist, C. et al. Recent Progress on the Marylie/Impact Beam Dynamics Code, article, December 6, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc886691/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.