Detection and Location of Damage on Pipelines

PDF Version Also Available for Download.

Description

The INEEL has developed and successfully tested a real-time pipeline damage detection and location system. This system uses porous metal resistive traces applied to the pipe to detect and locate damage. The porous metal resistive traces are sprayed along the length of a pipeline. The unique nature and arrangement of the traces allows locating the damage in real time along miles of pipe. This system allows pipeline operators to detect damage when and where it is occurring, and the decision to shut down a transmission pipeline can be made with actual real-time data, instead of conservative estimates from visual inspection ... continued below

Creation Information

Moore, Karen A.; Carrington, Robert & Richardson, John November 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The INEEL has developed and successfully tested a real-time pipeline damage detection and location system. This system uses porous metal resistive traces applied to the pipe to detect and locate damage. The porous metal resistive traces are sprayed along the length of a pipeline. The unique nature and arrangement of the traces allows locating the damage in real time along miles of pipe. This system allows pipeline operators to detect damage when and where it is occurring, and the decision to shut down a transmission pipeline can be made with actual real-time data, instead of conservative estimates from visual inspection above the area.

Source

  • ASME International Pipeline Conference,British Columbia, Canada,11/17/2004,11/17/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INEEL/CON-04-01834
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 910830
  • Archival Resource Key: ark:/67531/metadc886646

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Oct. 19, 2016, 4:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Moore, Karen A.; Carrington, Robert & Richardson, John. Detection and Location of Damage on Pipelines, article, November 1, 2003; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc886646/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.