Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report.

PDF Version Also Available for Download.

Description

In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed ... continued below

Physical Description

412 p.

Creation Information

Warne, Larry Kevin; Van Den Avyle, James A.; Lehr, Jane Marie; Rose, David (Voss Scientific, Albuquerque, NM); Krompholz, Hermann G. (Texas Tech University, Lubbock, TX); Vela, Russell (Texas Tech University, Lubbock, TX) et al. March 1, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 95 times , with 7 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.

Physical Description

412 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2007-0217
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/901968 | External Link
  • Office of Scientific & Technical Information Report Number: 901968
  • Archival Resource Key: ark:/67531/metadc886525

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 28, 2016, 6:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 7
Total Uses: 95

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Warne, Larry Kevin; Van Den Avyle, James A.; Lehr, Jane Marie; Rose, David (Voss Scientific, Albuquerque, NM); Krompholz, Hermann G. (Texas Tech University, Lubbock, TX); Vela, Russell (Texas Tech University, Lubbock, TX) et al. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report., report, March 1, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc886525/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.